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= Each row represents one object (also called unit)
= Each column represents one variable
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Multivariate data with an outcome variable

= The outcome variable (also called criterion variable) can be
o qualitative (nominal) : classes (e.g. cancer type)

o quantitative (e.g. survival expectation for a cancer patient)
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Predictive approaches - Training set

= The training set is used to build a predictive function
= This function is used to predict the value of the outcome variable for new objects
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Training set

Testing set

et to predict
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Flowchart of the approaches in multivariate analysis
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Quizz

Check your understanding of the concepts presented in the previous slides by applying them to your own
data.

1. Describe in one sentence a typical case of multidimensional data that is handled in your domain.
2. Explain how you would organise this dataset into a multivariate structure

What would correspond to the individuals?

What would correspond to the variables?

How many individuals (n) would you have?

How many variables (p) would you have?

Do you dispose of one or several outcome variable(s)?

If so, are these quantitative, qualitative or both?

3. Based on the conceptual framework defined above, which kind of approaches would be you envisage to

extract which kind of relevant information from this data? Note that several approaches can be combined
to address different questions.
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Historical (vintage) examples



Historical example of clustering heat map

= Spellman et al. (1998).

= Systematic detection of genes regulated in a periodic
way during the cell cycle.

= Several experiments were regrouped, with various ways
of synchronization (elutriation, cdc mutants, ...)

= ~800 genes showing a periodic patterns of expression
were selected (by Fourier analysis)

Spellman, P. T., Sherlock, G., Zhang, M. Q,, lyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, E
(1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol Biol Cell 9, 3273-97.Time profiles of yeast cells followed during cell cycle.
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Figure 1. (cont).



Stress response in yeast

= Gasch et al. (2000) tested the transcriptional response of _Zié'“'\v
yeast genome to 3
o Various stress conditions (heat shock, osmotic shock,
)
o Drugs A
B.
C:

o Alternative carbon sources

a ...

= The heatmap shows clusters of genes having similar
profiles of responses to the different types of stress.
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Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. & Brown, P. O.
(2000). Genomlc expression programs in the response of yeast ceIIs to enwronmental changes Mol Biol Cell 11, 4241-

57.




Cancer types (Golub, 1999)

= Compared the profiles of expression
of ~7000 human genes in patients
suffering from two different cancer
types: ALL or AML, respectively.

= Selected the 50 genes most
correlated with the cancer type.

= Goal: use these genes as molecular
signatures for the diagnostic of new
patients.

Golub, T. R., Slonim, D. K., Tamayo, P.,
Huard, C., Gaasenbeek, M., Mesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri,
M. A., Bloomfield, C. D. & Lander, E. S.
(1999). Molecular classification of cancer:
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Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
< 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML. The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean
are shaded in blue. The scale indicates SDs
above or below the mean. The top panel shows
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genes highly expressed in ALL, the bottom panel shows genes more
highly expressed in AML. Although these genes as a group appear
correlated with class, no single gene is uniformly expressed across the class,

illustrating the value of a multigene prediction method. For a complete list
of gene names, accession numbers, and raw expression values, see www.

class discovery and class prediction by gene 3
genome.wi.mit.edu/MPR.

expression monitoring. Science 286, 531-7.



Den Boer et al., 2009 : procedure

= Den Boer et al (2009) use Affymetrix microarrays to
characterize the transcriptome of 190 Acute Lymphoblastic

Leukemia of different types.

= They use these profiles to select “transcriptome
signatures” that will serve for diagnostics purposes:
assigning new samples to one of the cancer types.

= They apply an elaborate procedure relying on an inner and

an outer loop of cross-validation.
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= Data source: Den Boer et al. 2009. A subtype of childhood acute lymphoblastic
leukaemia with poor treatment outcome: a genome-wide classification study. Lancet

Oncol 10(2): 125-134.
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COALL cohort (training set; N=190)

1. Estimate number of gene probe sets in inner loop (two-thirds of patients)
2. Estimate prediction accuracy in outer loop (a third of patients)

130 patients in inner loop

(Ten-fold cross validation)

’ Training set (115)

100x 100x

AW 4

\ Test set (15)

60 patients in outer loop
(Three-fold cross validation)

3. Construct final classifier on total COALL cohort

.

DCOG cohort (validation set; N=107)

4. Determine accuracy of classifier in independent validation cohort
(tested only once)

Figure 1: Identification of a gene-expression signature enabling classification
of paediatric ALL



Den Boer 2009 - The transcriptomic signature

= The training procedure selects 100
gens whose combined expression
levels can be used to assign samples
to cancer subtypes.

= The heatmaps show that the selected
genes are differentially expressed

o between subtypes of the training
set (left);

o between subtypes of the testing
set (right).

= The heatmap is bi-clustered, in order
to identify simultaneously the groups
of patients (rows), and groups of
genes (columns) based on the
similarity between expression profiles.

=« Den Boer et al. 2009. A subtype of childhood acute lymphoblastic
leukaemia with poor treatment outcome: a genome-wide
classification study. Lancet Oncol 10(2): 125-134.

Subtype predictive gene-probe sets (n=110)
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Figure 2: Clustering of ALL subtypes by gene-expression profiles

Hierarchical clustering of patients from the COALL (left) and DCOG (right) studies with 110 gene-probe sets selected to classify paediatric ALL. Heat map shows which
gene-probe sets are overexpressed (in red) and which gene probe sets are underexpressed (in green) relative to mean expression of all gene-probe sets (see scale bar).
*Patients with E2A-rearranged subclone (15-26% positive cells). Right column of grey bar denotes BCR-ABL1-like cases.



Conceptual workflow — transcriptome analysis
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