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Brain-learning exercise : assign individuals to groups 
based on their features



Conceptual illustration with two predictor variables
n In the next slides, we will 

provide you with a higher-
resolution of the plots, which 
represent represent a study
case.

n Exercise: assign intuitively 
each individual (black dot) to 
one of the two groups (A, B).
q At each step, ask yourself 

the following questions. 
q Which criterion did you use

to assign an individual to a 
group?

q How confident do you feel 
for each of your 
predictions?

q What is the effect of the 
respective means?

q What is the effect of the 
respective standard 
deviations?

q What is the effect of the 
correlations between the 
two variables?
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Conceptual illustration with two variables – Study case 1

n Inspect the distribution of points for the two groups 
of individuals (pink, blue) on the 2-dimensional 
feature space. 
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Conceptual illustration with two variables – Study case 2

n Effect of the group centre location. 
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Conceptual illustration with two variables – Study case 3

n Effect of the group variance. 
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Conceptual illustration with two variables – Study case 4

n Effect of the group variance. 
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Conceptual illustration with two variables – Study case 5

n Impact of the group-specific variances 
(heteroscedasticity of the data)
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Conceptual illustration with two variables – Study case 6

n Impact of the group-specific 
variances (heteroscedasticity 
of the data)
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Conceptual illustration with two variables – Study case 7

n Effect of the covariance between 
features. 
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Conceptual illustration with two variables – Study case 8

n Effect of the covariance between 
features

11

X1 (Feature 1)

X2
 (F

ea
tu

re
 1

)



Conceptual illustration with two variables – Study case 9

n Group-specific covariances between 
features.
q The two groups have different 

covariance matrices: the clouds of 
points are elongated in different 
directions. 

q How does this difference affects group 
assignments ?
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Multivariate data

n Each row represents one object (also called unit)
n Each column represents one variable

variable 1 variable 2 ... variable p
individual 1 x11 x21 ... xp1
individual 2 x12 x22 ... xp2
individual 3 x13 x23 ... xp3
individual 4 x14 x24 ... xp4
individual 5 x15 x25 ... xp5
individual 6 x16 x26 ... xp6
individual 7 x17 x27 ... xp7
individual 8 x18 x28 ... xp8
... ... ... ... ...
individual n x1n x2n ... xpn



Multivariate data with an outcome variable

n The outcome variable (also called criterion variable) can be 
q qualitative (nominal) : classes (e.g. cancer type)
q quantitative (e.g. survival expectation for a cancer patient)

Outcome variable
variable 1 variable 2 ... variable p variable p+1

individual 1 x11 x21 ... xp1 y1
individual 2 x12 x22 ... xp2 y2
individual 3 x13 x23 ... xp3 y3
individual 4 x14 x24 ... xp4 y4
individual 5 x15 x25 ... xp5 y5
individual 6 x16 x26 ... xp6 y6
individual 7 x17 x27 ... xp7 y7
individual 8 x18 x28 ... xp8 y8
... ... ... ... ... ...
individual n x1n x2n ... xpn yn

Predictor variables



Outcome variable
variable 1 variable 2 ... variable p variable p+1

individual 1 x11 x21 ... xp1 y1
individual 2 x12 x22 ... xp2 y2
individual 3 x13 x23 ... xp3 y3
... ... ... ... ... ...
individual N_train x1n x2n ... xpn yn

Outcome variable
variable 1 variable 2 ... variable p variable p+1

individual 1 x11 x21 ... xp1 ?
individual 2 x12 x22 ... xp2 ?
individual 3 x13 x23 ... xp3 ?
... ... ... ... ... ...
individual N_pred x1n x2n ... xpn ?

Predictor variables
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Predictive approaches - Training set

n The training set is used to build a predictive function
n This function is used to predict the value of the outcome variable for new objects



Evaluation of prediction with a testing set Outcome variable
variable 1 variable 2 ... variable p variable p+1

individual 1 x11 x12 ... x1p y1
individual 2 x21 x22 ... x2p y2
individual 3 x31 x32 ... x3p y3
... ... ... ... ... ...
individual ntrain xn1 xn2 ... xnp yn

Outcome variable
variable 1 variable 2 ... variable p variable p+1 

(known value)
variable p+1 
(predicted)

individual 1 x11 x12 ... x1p y1 y'1
individual 2 x21 x22 ... x2p y2 y'2
individual 3 x31 x32 ... x3p y3 y'3
... ... ... ... ... ... ...
individual ntest xn1 xn2 ... xnp yntest y'ntest

Outcome variable
variable 1 variable 2 ... variable p variable p+1

individual 1 x11 x12 ... x1p ?
individual 2 x21 x22 ... x2p ?
individual 3 x31 x32 ... x3p ?
... ... ... ... ... ...
individual npred xn1 xn2 ... xnp ?
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Flowchart of the approaches in multivariate analysis
multivariate table X

Reduction of dimensions
- variable selection
- principal component analysis

Multidimensional
scaling distance matrix

outcome
variable Y?

Exploratory analysis

none quantitative

Regression analysis

Predicted value of 
a quantitative variable

yest = f(x)

Supervised classification

nominal

Assignment of individuals 
to predefined classes

g=f(x)

Discovered classes
+ individual assignment

Cluster analysisVisualisation

Graphical 
representations



Quizz

Check your understanding of the concepts presented in the previous slides by applying them to your own 
data. 
1. Describe in one sentence a typical case of multidimensional data that is handled in your domain. 
2. Explain how you would organise this dataset into a multivariate structure

q What would correspond to the individuals?
q What would correspond to the variables?
q How many individuals (n) would you have?
q How many variables (p) would you have?
q Do you dispose of one or several outcome variable(s)?
q If so, are these quantitative, qualitative or both?

3. Based on the conceptual framework defined above, which kind of approaches would be you envisage to 
extract which kind of relevant information from this data? Note that several approaches can be combined 
to address different questions. 



Historical (vintage) examples



Historical example of clustering heat map

n Spellman et al. (1998).
n Systematic detection of genes regulated in a 

periodic way during the cell cycle. 
n Several experiments were regrouped, with 

various ways of synchronization (elutriation, cdc
mutants, …)

n ~800 genes showing a periodic patterns of 
expression were selected (by Fourier analysis)

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. 
(1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray 
hybridization. Mol Biol Cell 9, 3273-97.Time profiles of yeast cells followed during cell cycle.



Stress response in yeast

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. & Brown, P. O. 
(2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241-
57.

n Gasch et al. (2000) tested the transcriptional 
response of yeast genome to
q Various stress conditions (heat shock, 

osmotic shock, …)
q Drugs
q Alternative carbon sources
q …

n The heatmap shows clusters of genes having 
similar profiles of responses to the different 
types of stress. 

22



Cancer types (Golub, 1999)

n Compared the profiles of 
expression of ~7000 human 
genes in patients suffering from 
two different cancer types: ALL 
or AML, respectively.

n Selected the 50 genes most 
correlated with the cancer type.

n Goal: use these genes as 
molecular signatures for the 
diagnostic of new patients. 

23

n Golub, T. R., Slonim, D. K., Tamayo, P., 
Huard, C., Gaasenbeek, M., Mesirov, J. P., 
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, 
M. A., Bloomfield, C. D. & Lander, E. S. 
(1999). Molecular classification of cancer: 
class discovery and class prediction by gene 
expression monitoring. Science 286, 531-7.



Den Boer et al., 2009 : procedure

n Data source: Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic 
leukaemia with poor treatment outcome: a genome-wide classification study. Lancet 
Oncol 10(2): 125-134.

n Den Boer et al (2009) use Affymetrix microarrays  
to characterize the transcriptome of 190 Acute 
Lymphoblastic Leukemia of different types.

n They use these profiles to select “transcriptome 
signatures” that will serve for diagnostics 
purposes: assigning new samples to one of the 
cancer types.

n They apply an elaborate procedure relying on an 
inner and an outer loop of cross-validation. 



Den Boer 2009 - The transcriptomic signature

n Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic 
leukaemia with poor treatment outcome: a genome-wide 
classification study. Lancet Oncol 10(2): 125-134.

n The training procedure selects 
100 gens whose combined 
expression levels can be used 
to assign samples to cancer 
subtypes.

n The heatmaps show that the 
selected genes are 
differentially expressed 
q between subtypes of the 

training set (left);
q between subtypes of the 

testing set (right).

n The heatmap is bi-clustered, in 
order to identify  
simultaneously the groups of 
patients (rows), and groups of 
genes (columns) based on the 
similarity between expression 
profiles. 
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Supervised classification - Introduction

n In the previous chapter, we presented the problem of clustering, which consists in grouping 
objects without any a priori definition of the groups. The group definition emerge from the 
clustering itself (class discovery). Clustering is thus unsupervised.

n In some cases, one would like to focus on some pre-defined classes :
q classifying tissues as cancer or non-cancer 
q classifying tissues between different cancer types
q classifying genes according to pre-defined functional classes (e.g. metabolic pathway, different phases of 

the cell cycle, ...)
n The classifier can be built with a training set, and used later for classifying new objects. This is 

called supervised classification. 
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Supervised classification methods

n There are many alternative methods for supervised classification
q Discriminant analysis (linear: LDA or quadratic: QDA)
q Bayesian classifier
q K-nearest neighbours (KNN)
q Support Vector Machine (SVM)
q Decision tree
q Random Forest (RF)
q Neural network (NN)
q ...

n Questions
q Which method should we choose?
q How should we tune its parameters?
q How to evaluate the respective performances of the methods and parametric choices?
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Supervised classification methods

Choosing the best method is not trivial
n Some methods rely on strong assumptions.

q LDA and QDA: multivariate normality.
q LDA: all the classes have the same 

covariance matrix.
n Some methods implicitly rely on Euclidian 

distance (e.g. KNN)
n Some methods require a large training set, to 

avoid over-fitting.
n Global vs local classifiers. 

q Global classifiers (e.g. LDA, QDA): same 
classification rule in the whole data space. 
The rule is built on the whole training set.

q Local classifiers (e.g. KNN): rules are made 
in different sub-spaces on the basis of the 
neighbouring training points.

n The choice of the method thus depends on the 
structure and on the size of the data sets.

Choosing the best parameters is not trivial
n KNN: number of neighbours
n LDA, QDA: prior/posterior probabilities
n SVM: kernel
n Decision trees
n RF: number of iterations
n …
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Study case 1: ALL versus AML
(data from Golub et al., 1999)



Cancer types (Golub, 1999)

n A founding paper: Golub et al 
(1999)

n Compared the profiles of 
expression of ~7000 human 
genes in patients suffering 
from two different cancer 
types: ALL or AML, 
respectively.

n Selected the 50 genes most 
correlated with the cancer 
type.

n Goal: use these genes as 
molecular signatures for the 
diagnostic of new patients. 

n Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. & Lander, E. S. (1999). 
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-7. 31



Motivation

n The article by Golub et al. (1999) was motivated by the need to develop efficient diagnostics 
to predict the cancer type from blood samples of patients.

n They proposed a “molecular signature” of cancer type, allowing to discriminate ALM from 
ALL.

n This first “historical” study relied on somewhat arbitrary criteria to select the genes 
composing this signature, and the way to apply them to classify new patients.

n We will present here the classical methods used in statistics to classify “objects” (patients, 
genes) in pre-defined classes.
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Golub et al (1999)

n Data source: Golub et al (1999). First historical publication 
searching for molecular signatures of cancer type.

n Training set
q 38 samples from 2 types of leukemia

• 27 Acute lymphoblastic leukemia (note: 2 subtypes: 
ALL-T and ALL-B)

• 11 Acute myeloid leukemia
q Original data set contains ~7000 genes
q Filtering out poorly expressed genes retains 3051 genes

n We re-analyze the data using different methods.
n Selection of differentially expressed genes (DEG)

q Welch t-test  with robust estimators (median, IQR) retains 
367differentially expressed genes with E-value <= 1.

q Top plot: circle radius indicates T-test significance.
q Bottom plot (volcano plot): 

• sig = -log10(E-value) >= 0

33

n Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., 
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and Lander, E. 
S. (1999). Molecular classification of cancer: class discovery and class prediction by 
gene expression monitoring. Science 286, 531-7.
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Golub 1999 - Profiles of selected genes

n The 367 gene selected by the 
T-test have apparently different 
profiles.

q Some genes seem greener for 
the ALL patients (27 leftmost 
samples)

q Some genes seem greener for 
the AML patients (11 rightmost 
samples)

AMLALL 34



Golub – hierarchical vlustering of DEG genes / profiles

n Hierarchical clustering 
perfectly separates the two 
cancer types (AML versus 
ALL).

n This perfect separation is 
observed  for various 
metrics (Euclidian, 
correlation, dot product) 
and agglomeration rules 
(complete, average, Ward).

n Sample clustering further 
reveals subgroups of ALL.

n Gene clustering reveals 4 
groups of profiles:
q AML red, ALL green
q AML green, ALL red
q Overall green, stronger 

in AML
q Overall red, stronger in 
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golub ; eu distance; complete linkage
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Principal component analysis (PCA)

n Principal component analysis 
(PCA) relies on a transformation of 
a multivariate table into a multi-
dimensional table of 
“components”.

n With Golub dataset, 
q Most variance is captured by 

the first component.
q The first component (Y axis) 

clearly separates ALL from 
AML patients.

q The second component splits 
the AML set into two well-
separated groups, which 
correspond almost perfectly 
to T-cells and B-cells, resp. 
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Study case 2: ALL subtypes
(data from Den Boer et al., 2009)



Den Boer et al., 2009 : procedure

n Den Boer et al (2009) use Affymetrix microarrays  
to characterize the transcriptome of 190 Acute 
Lymphoblastic Leukemia of different types.

n They use these profiles to select “transcriptome 
signatures” that will serve for diagnostics 
purposes: assigning new samples to one of the 
cancer types.

n They apply an elaborate procedure relying on an 
inner and an outer loop of cross-validation. 

n Data source: Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2): 125-134. 38

hyperdiploid 44
pre-B ALL 44
TEL-AML1 43
T-ALL 36
E2A-rearranged (EP) 8
BCR-ABL 4
E2A-rearranged (E-sub) 4
MLL 4
BCR-ABL + hyperdiploidy 1
E2A-rearranged (E) 1
TEL-AML1 + hyperdiploidy 1



Den Boer 2009 - The transcriptomic signature

n The training procedure selects 100 
gens whose combined expression 
levels can be used to assign 
samples to cancer subtypes.

n The heatmaps show that the 
selected genes are differentially 
expressed 
q between subtypes of the 

training set (left);
q between subtypes of the testing 

set (right).

n Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2): 125-134. 39



Den Boer 2009 - Accuracy of the classifier

n The signature has an excellent diagnostic value: for the well-represented cancer types, the sensitivity and specificity are >90%.
n Note: accuracy is misleading some subtypes have 98% accuracy with 0% sensitivity. 

n Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2): 125-134. 40

Sn = TP / (TP + FN)

Sp = TN / (TN + FP)

PPV = TP / (VP + FP)



Den Boer 2009 - Exploring some profiles

n Left: expression for 2 genes selected at random. Each symbol represents one sample, coloured by cancer type. All cancer types are 
intermingled.

n Right: expression of the 2 genes with the highest sample-wise variance. The first gene (CD9) separates cell types T and Bt (low expression) 
from Bh, Bep, Br (high expression). Bo is dispersed over the whole range.

n Question: how can we identify a combination of genes that discriminate the different subtypes as well as possible ?
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Supervised classification: 
methodological principles

Statistical Analysis of Microarray Data



Multivariate data with a nominal criterion variable

n One disposes of a set of objects (the sample) which have been previously assigned to predefined 
classes. 

n Each object is characterized by a series of quantitative variables (the predictors), and its class is 
indicated in a separated column (the criterion variable).

43

Criterion variable
variable 1 variable 2 ... variable p class

object 1 x1,1 x2,1 ... xp,1 A

object 2 x1,2 x2,2 ... xp,2 A

object 3 x1,3 x2,3 ... xp,3 A
... ... ... ... ... ...
object i x1,i x2,i ... xp,i B

object i+1 x1,i+1 x2,i+1 ... xp,i+1 B

object i+2 x1,i+2 x2,i+2 ... xp,i+2 B
... ... ...
object n-1 x1,n-1 x2,n-1 ... xp,n-1 K

object n x1,n x2,n ... xp,n K

Predictor variables



Supervised classification – training and prediction

n Training phase (training + evaluation)
q The sample is used to build a discriminant function
q The quality of the discriminant function is evaluated

n Prediction phase
q The discriminant function is used to predict the value of the criterion variable for new objects
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Criterion variable
variable 1 variable 2 ... variable p class

object 1 x11 x21 ... xp1 A

object 2 x12 x22 ... xp2 A

object 3 x13 x23 ... xp3 B
... ... ... ... ... ...
object ntrain x1n x2n ... xpn K

Criterion variable
variable 1 variable 2 ... variable p class

object 1 x11 x21 ... xp1 ?

object 2 x12 x22 ... xp2 ?

object 3 x13 x23 ... xp3 ?
... ... ... ... ... ...
object npred x1n x2n ... xpn ?

Predictor variables

Predictor variables



Prediction: individuals of unknown class

Testing: individuals of known class

Supervised classification: steps of the general procedure

Training: individuals of 
known class

Training set

Training

Trained classifier

Testing set

Prediction Predicted class Confusion table
(for evaluation)Comparison

Individuals of 
unknown class

Prediction Predicted class

45

Validated classifier



Discriminant analysis

Statistical Analysis of Microarray Data



Linear or quadratic discriminant analysis (LDA vs QDA)
n Equal covariance matrix 

between groups?
q Linear Discriminant 

Analysis (LDA) is 
appropriate

q Green lines on the graph
q The discrimination rule

amounts to draw a straight 
line between the gravity 
centers of the training 
groups

n Different covariant matrices?
q Quadratic Discriminant 

Analysis is recommended 
(red boundaries on the 
graphs)
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Classification rules

n New units can be classified on the basis of rules based on the calibration sample
n Several alternative rules can be used

q Maximum likelihood rule: based on the density function. Assign unit u to group g if

q Inverse probability rule: based on the probability. Assign unit u to group g if

q Posterior probability rule: assign unit u to group g if

Where
X is the unit vector
g,g’ are two groups
f(X|g) is the density function of the value X for group g
P(X|g) is the probability to emit the value X given the group g
P(g|X) is the probability to belong to group g, given the value X
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€ 

P(X | g) > P(X | g') for g'≠ g

€ 

P(g | X) > P(g' | X) for g'≠ g

€ 

f (X | g) > f (X | g') for g'≠ g



Posterior probability rule

n The posterior probability can be obtained by application of Bayes' theorem
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€ 

P(g | X) =
P(X | g)P(g)

P(X)

€ 

P(g | X) =
P(X | g)π g

P(X | g')π g'
g '=1

k

∑

Where
q X is the unit vector
q g is a group
q k is the number of groups
q pg is the prior probability of group g



Choice of the prior probabilities

n The classes may have different proportions between the sample and the population
n For example, we could decide, based on our knowledge of a problem, that it is likely to have 

1% of the individuals that belong to the first group, whereas the training set contains 11% of 
them. 

50

Class Sample Priors from 
sample

Arbitrary 
priors

PHO 13 659 58
11% 11% 1%

MET 19 964 58
17% 17% 1%

CTL 82 4160 5667
72% 72% 98%

TOTAL 114 5783 5783

Population



Evaluating the performances of a classifier



Concepts

n Evaluation settings
q Internal evaluation (“training error”) versus external test set (“testing error”)
q Independent testing set
q Split out of the training set into training and testing subsets

• Iterative subsampling
• K-fold cross-validation
• Leave-one-out (LOO)

n Evaluation statistics
q Confusion table
q Misclassification error rate (MER)
q Additional metrics for two-groups classification

• FP, FN, TP, TN
• Many metrics derived from there: Sn, PPV, FPR, FDR, …
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Training – testing settings



Evaluation of the classifier – predicted and known classes

n The evaluation of a classifier relies on a data set for which we know the class of each individual : the 
testing set. 

n The trained classifier is used to predict the class of each individual of the testing set
n The predicted and known classes are then compared

n54

variable 1 variable 2 ... variable p predicted known
individual 1 x1,1 x2,1 ... xp,1 A A
individual 2 x1,2 x2,2 ... xp,2 B A
individual 3 x1,3 x2,3 ... xp,3 A A
... ... ... ... ... ... ...
individual i x1,i x2,i ... xp,i K B
individual i+1 x1,i+1 x2,i+1 ... xp,i+1 B B
individual i+2 x1,i+2 x2,i+2 ... xp,i+2 B B
... ... ...
individual n-1 x1,n-1 x2,n-1 ... xp,n-1 K K
individual n x1,n x2,n ... xp,n K K

Predictor variables Criterion variable



Training, testing and prediction

n Ideally : dispose of an independent testing set
n Alternatives

q Internal validation 
(NOT RECOMMENDED)

q Splitting the training set
• Iterative subsampling
• K-fold cross-validation (CV)
• Leave-one-out (LOO)
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Input variables (features)
Quantitative (numbers)

Matrix: individuals x variables

Outcome variable
Qualitative 

(class labels)

Prediction

X3 (n3 x m)
• n3 individuals
• m variables

Y3’
Prediction

Accuracy or 
error rate

Testing

X2 (n2 x m)
• n2 individuals
• m variables

Y2Y2’
Prediction

Comparison

Confusion 
table

Training

X1 (n1 x m)
• n1 individuals
• m variables

Y1
Training Trained 

classifier



Using an independent testing set

n Using the sample itself for evaluation is problematic, because the evaluation is biased (too optimistic). 
n To obtain an independent evaluation, one needs two separate sets : one for training, and one for testing. 
n However, we do not always dispose of two independent sets.
n An alternative setting is to split randomly the samples of known class into two subsets (holdout approach) :

q the training set is used to build a discriminant function
q the testing set is used for evaluation
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Criterion variable
variable 1 variable 2 ... variable p class

object 1 x11 x21 ... xp1 A

object 2 x12 x22 ... xp2 A

object 3 x13 x23 ... xp3 B
... ... ... ... ... ...
object ntrain x1n x2n ... xpn K

variable 1 variable 2 ... variable p known predicted
object 1 x11 x21 ... xp1 A A

object 2 x12 x22 ... xp2 B A

object 3 x13 x23 ... xp3 B B
... ... ... ... ... ... ...
object ntest x1n x2n ... xpn K K

Criterion variable

Predictor variables

T
ra

in
in

g
 s

et

Predictor variables

T
es

ti
n

g
 s

et



Training error rate

n One way to evaluate the performances of a classifier is to run it on the training set itself. 
n This approach is called internal analysis.
n The known and predicted class are then compared for each individual of the training set itself.
n The result is denoted as the training error rate (the error rate measured on the training set itself).
n Warning : 

q This approach is obviously biased, since the training set was used to train the classifier, it is thus 
optimised for this very specific dataset.

q The training error rate is thus too optimistic: the performances may be much weaker on an 
independent set. 

q This approach is not recommended for general purposes. 
q The main interest of this approach is to compare it with an independent testing set (testing error rate) 

in order to measure the overfitting of the classifier to the particular training set. 
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K-fold cross validation

n Split the training set into k parts (e.g. 10-fold cross-validation)
n Iterate for each subset i

1. Train a classifier with all subsets except subset i
2. Run the classifier to predict the class of each element of the testing subset (subset i)

n Compare the predicted and known classes for each individual
n Each individual is thus used

q 1 time for testing
q k-1 times for training

n58



Leave-one-out (LOO) validation

n When the sample is too small, it is problematic to loose half of it for testing.
n In such a case, the leave-one-out (LOO) approach is recommended :

1. Discard a single object from the sample.
2. With the remaining objects, build a discriminant function.
3. Use this discriminant function to predict the class of the discarded object.
4. Compare known and predicted class for the discarded object.
5. Iterate the above steps with each object of the sample.

n Note : LOO is equivalent to perform a N-fold cross validation (where N is the training set size)
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Evaluation measures for supervised classification



Evaluation of a classifier – confusion table

n The results of the evaluation are summarized in a confusion table, which contains the count of 
the predicted/known combinations. 

n The confusion table can be used to calculate the accuracy of the predictions.
n When there are more than 2 groups or when the groups are not associated to + and -, the 

performances are  estimated by computing the misclassification error rate (MER)
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A B C SUM PHO MET CTL SUM
A 8 0 0 8 PHO 8 0 0 8
B 0 1 1 2 MET 0 1 1 2
C 5 18 81 104 CTL 5 18 81 104
SUM 13 19 82 114 SUM 13 19 82 114
Hits Diagonal Hits 8 + 1 + 81 90

Errors Non-diagonal Errors 114 - 90 24

Hit rate Hits / total Also named 'accuracy" Hit rate 90 / 114 78.95%

MER Errors / total Misclassification error rate MER 24 / 114 21.05%

3-groups confusion table

Known group

Example

Known

Pr
ed

ic
te

d

Pr
ed

ic
te

d 
gr
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p



Evaluation of a classifier – confusion table for 2a-groups classification

n The results of the evaluation are summarized in a confusion table, which contains the count of 
the predicted/known combinations. 

n The confusion table can be used to calculate the performances of the classifier.
n For 2-groups classification, specific metrics can be applied if one group is considered negative 

and the other  one positive
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Case Control SUM Case Control SUM
Case TP FP P Case 99 20 119
Control FN TN N Control 1 180 181
SUM TP+FN FP+TN T SUM 100 200 300
Errors FN+FP Errors 21 7.00%
Correct TP+TN Correct 279 93.00%
FPR FP/(FP+TN) FPR 20/(200) 10.00%
Sn TP/(TP+FN) Sn 99/(100) 99.00%
FDR FP/P FDR 20/119 16.81%

Known class Known class

Pr
ed

ict
ed

 cl
as

s

2-groups classification Example



Receiving Operator Characteristics (ROC)

n The Receiving Operator  Characteristics 
(ROC) represents the performances of a 
classifier as a function of a continuous score 
(e.g. discriminant function, posterior 
probability)

n The result is a curve with
q Abscissa: FPR
q Ordinate: Sensitivity

n A random classifier will be aligned onto the 
diagonal

n A perfect classifier achieves FPR=0 and Sn=1 
(upper left corner)

n The closer the curves comes to this perfect 
performance, the better the classifier. 

n The Area Under the Curve (AUC) is often used 
to compare the performances
q Between classifiers
q Between different parameter settings for 

the same classifier
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Evaluation statistics for 2-groups classifiers
Various statistics can 
be derived from the 4 
elements of a 
contingency table (TP, 
FP, TN, FN). 

Abbrev Name Formula
TP True positive TP
FP False positive FP
FN False negative FN
TN True negative TN
KP Known Positive TP+FN
KN Known Negative TN+FP
PP Predicted Positive TP+FP
PN Predicted Negative FN+TN
N Total TP + FP + FN + TN

Prev Prevalence (TP + FN)/N
ODP Overall Diagnostic Power (FP + TN)/N
CCR Correct Classification Rate (TP + TN)/N
Sn True Positive Rate (Sensitivity) TP/(TP + FN)
TNR True Negative Rate (Specificity) TN/(FP + TN)
FPR False Positive Rate FP/(FP + TN)
FNR False Negative Rate FN/(TP + FN) = 1-Sn
PPV Positive Predictive Value TP/(TP + FP)
FDR False Discovery Rate FP/(FP+TP)
NPV Negative Predictive Value TN/(FN + TN)
Mis Misclassification Rate (FP + FN)/N

Odds Odds-ratio (TP + TN)/(FN + FP)
Kappa Kappa ((TP + TN) - (((TP + FN)*(TP + FP) + (FP + 

TN)*(FN + TN))/N))/(N - (((TP + FN)*(TP + FP) 
+ (FP + TN)*(FN + TN))/N))

NMI NMI n(s) (1 - -TP*log(TP)-FP*log(FP)-FN*log(FN)-
TN*log(TN)+(TP+FP)*log(TP+FP)+(FN+TN)*log
(FN+TN))/(N*log(N) - ((TP+FN)*log(TP+FN) + 
(FP+TN)*log(FP+TN)))

ACP Average Conditional Probability 0.25*(Sn+ PPV + Sp + NPV)
MCC Matthews correlation coefficient (TP*TN - FP*FN) / 

sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
Acc.a Arithmetic accuracy (Sn + PPV)/2
Acc.a2 Accuracy (alternative) (Sn + Sp)/2
Acc.g Geometric accuracy sqrt(Sn*PPV)

Hit.noTN A sort of hit rate without TN (to 
avoid the effect of their large 
number)
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The arithmetic accuracy may be misleading

n Acca = (Sn + PPV)/2
n An easy way to fool the arithmetic 

accuracy: predict all features as positive
q -> Sn guaranteed to be 100%
q à Acca guaranteed to be >50%
q Of course, you have a poor PPV, but 

the accuracy  > 0.5 will be misleading
n The geometric accuracy circumvents this 

problem
q Accg = sqrt(Sn*PPV)
q Requires for both Sn and PPV to be 

high. 
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ueAbbrev Name Formula

TP True positive TP
FP False positive FP
FN False negative FN
TN True negative TN
KP Known Positive TP+FN
KN Known Negative TN+FP
PP Predicted Positive TP+FP
PN Predicted Negative FN+TN
N Total TP + FP + FN + TN

Prev Prevalence (TP + FN)/N
ODP Overall Diagnostic Power (FP + TN)/N
CCR Correct Classification Rate (TP + TN)/N
Sn True Positive Rate (Sensitivity) TP/(TP + FN)
TNR True Negative Rate (Specificity) TN/(FP + TN)
FPR False Positive Rate FP/(FP + TN)
FNR False Negative Rate FN/(TP + FN) = 1-Sn
PPV Positive Predictive Value TP/(TP + FP)
FDR False Discovery Rate FP/(FP+TP)
NPV Negative Predictive Value TN/(FN + TN)
Mis Misclassification Rate (FP + FN)/N

Odds Odds-ratio (TP + TN)/(FN + FP)
Kappa Kappa ((TP + TN) - (((TP + FN)*(TP + FP) + (FP + 

TN)*(FN + TN))/N))/(N - (((TP + FN)*(TP + FP) 
+ (FP + TN)*(FN + TN))/N))

NMI NMI n(s) (1 - -TP*log(TP)-FP*log(FP)-FN*log(FN)-
TN*log(TN)+(TP+FP)*log(TP+FP)+(FN+TN)*log
(FN+TN))/(N*log(N) - ((TP+FN)*log(TP+FN) + 
(FP+TN)*log(FP+TN)))

ACP Average Conditional Probability 0.25*(Sn+ PPV + Sp + NPV)
MCC Matthews correlation coefficient (TP*TN - FP*FN) / 

sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
Acc.a Arithmetic accuracy (Sn + PPV)/2
Acc.a2 Accuracy (alternative) (Sn + Sp)/2
Acc.g Geometric accuracy sqrt(Sn*PPV)

Hit.noTN A sort of hit rate without TN (to 
avoid the effect of their large 
number)

TP/(TP+FP+FN)



TN-based statistics may be misleading
n For some types of 

analyses, TN can 
represent >99.9%

n Example: predicting 
transcription factor 
binding sites in a whole 
genome. 

n -> All the statistics 
including TN are 
misleading

n For example, a classifier 
will have a very high 
specificity (Sp) and a very 
low false positive rate 
(FPR) even though its 
predictions are mostly 
wrong.
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Abbrev Name Formula
TP True positive TP
FP False positive FP
FN False negative FN
TN True negative TN
KP Known Positive TP+FN
KN Known Negative TN+FP
PP Predicted Positive TP+FP
PN Predicted Negative FN+TN
N Total TP + FP + FN + TN

Prev Prevalence (TP + FN)/N
ODP Overall Diagnostic Power (FP + TN)/N
CCR Correct Classification Rate (TP + TN)/N
Sn True Positive Rate (Sensitivity) TP/(TP + FN)
TNR True Negative Rate (Specificity) TN/(FP + TN)
FPR False Positive Rate FP/(FP + TN)
FNR False Negative Rate FN/(TP + FN) = 1-Sn
PPV Positive Predictive Value TP/(TP + FP)
FDR False Discovery Rate FP/(FP+TP)
NPV Negative Predictive Value TN/(FN + TN)
Mis Misclassification Rate (FP + FN)/N

Odds Odds-ratio (TP + TN)/(FN + FP)
Kappa Kappa ((TP + TN) - (((TP + FN)*(TP + FP) + (FP + 

TN)*(FN + TN))/N))/(N - (((TP + FN)*(TP + FP) 
+ (FP + TN)*(FN + TN))/N))

NMI NMI n(s) (1 - -TP*log(TP)-FP*log(FP)-FN*log(FN)-
TN*log(TN)+(TP+FP)*log(TP+FP)+(FN+TN)*log
(FN+TN))/(N*log(N) - ((TP+FN)*log(TP+FN) + 
(FP+TN)*log(FP+TN)))

ACP Average Conditional Probability 0.25*(Sn+ PPV + Sp + NPV)
MCC Matthews correlation coefficient (TP*TN - FP*FN) / 

sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
Acc.a Arithmetic accuracy (Sn + PPV)/2
Acc.a2 Accuracy (alternative) (Sn + Sp)/2
Acc.g Geometric accuracy sqrt(Sn*PPV)

Hit.noTN A sort of hit rate without TN (to 
avoid the effect of their large 
number)

TP/(TP+FP+FN)



Machine-learning – classification approaches



K Nearest Neighbours (KNN): principle,  pros and cons 
Principle
● memorize the positions of individuals training 

set 
● predict the class of an individual based on 

class labels of its closest neighbours in the 
training set.

Pros
● Variety of distance criteria to be choose from

pretty intuitive and simple.
● no assumptions about data distribution
● No Training Step
● Easy to implement for multi-class problem.

Cons
● How to choose K ? No general criterion to 

choose the optimal number of neighbors.
● Sensitive to the curse of dimensionality (over-

fitting)
● Imbalanced data causes problems.
● Outlier sensitivity.
● Slow algorithm
● Missing Value treatment. 68

Acharya, A. (2017). Comparative Study of 
Machine Learning Algorithms for Heart 
Disease Prediction, (April).



Decision trees (DT): principles, pros and cons
Principle
● A Decision Tree (DT) builds logical rules (e.g. 

if variable i > a threshold, assign to class c) 
that progressively lead to assign each sample 
to a single class. 

Pros
● Expressive: one can understand a posteriori 

which criteria are important for class 
assignation. 

Cons
● Very sensitive  to over-fitting
● Lack of generalisation on unseen data.

69

Acharya, A. (2017). Comparative Study of Machine Learning 
Algorithms for Heart Disease Prediction, (April).



Random Forest (RF): principle,  pros and cons 
Principle
● A random forest (RF) is a classifier 

consisting of a collection of decision trees, 
● Bagging (bootstrapping): each tree is 

constructed based on a subset of the training 
set. 

● Majority vote: a sample is assigned to the 
class having the majority of assignations by 
individual trees. 

Pros
● Reduces the over-fitting problem of the 

decision trees. 

Cons
● Not easy to visually interpret

70

Adapted from: Anwar Isied and Hashem Tamimi. Using Random Forest 
(RF) as a transfer learning classifier for detecting Error-Related Potential 
(ErrP) within the context of P300-Speller. 
DOI: 10.12751/nncn.bc2015.0143 
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Support Vector Machines (SVM): principle, pros and cons
Principle
● Separate  the various classes by a hyperplane 

in the feature hyperspace
● SVM is modelled with train data and outputs 

the hyperplane in the test data. 
● The SVM model tries to find the space in the 

matrix of data where different classes of data 
can be widely separated  and draws a 
hyperplane.

Pros
● Performs similarly to logistic regression when 

linear separation
● Performs well with non-linear boundary 

depending on the kernel used
● Handles well high-dimensional data.

Cons
● Sensitive to overfitting
● Training issues depending on kernel

71
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Over-fitting and feature selection

72



●●
●●●
●●●
●●
●

●
●

●
●

●●●●
●
●●

●

●
●

●
●

●
●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of variables and over−fitting
random tests

Number of variables (p)

Er
ro

r r
at

e

●●●●●●
●
●●●

●

●

●

●

●

●●●●●●●
●

●

●
●

●

●

●

LOO
internal
expected (balanced classes)
expected (majority class)

Over-fitting

n A typical application of supervised 
classification is to classify experiments 
(e.g. patient types) on the basis of the 
expression profiles. 

n In this case, the objects are the 
experiments, and the variables the genes. 

n This raises a problem of over-fitting: the 
number of variables is much larger than 
the number of objects in the training set. 

n In such situations, the classifier will tend to 
build a classification rule which perfectly 
fits the training set, but fails to generalize 
to other observations. 
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Feature selection (variable selection)

n One approach to circumvent this problem is to select a subset of variables only.
n This subset of variables can be selected according to different rules. 

q Variable ordering: variables are ordered according to some criterion, and the topmost variables are 
retained. 
• Non-supervised criterion: e.g. sort features by decreasing variance (the relevance is questionable). 
• P-value of the t-test (the P-value is not always linear with the t statistics, since the number of 

observations can vary from row to row if there are missing values).
q Variables combinations

• Selection of a subset of variables and estimation of the capability of each subset to classify correctly.
• The number of possible combinations of variables increases exponentially with the number of variables. 
• All combinations of features. Generally not tractable: 2^m possibilities

q Stepwise selection
• Stepwise selection is an heuristics to select a subset of variables in a quadratic time, but they do not 

guarantee optimality.
n Forward selection
n Backward selection
n Forward-backward selection
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Conclusions
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Summary – supervised classification

n Setting: 
q a set of quantitative predictor variables (input variables)
q a single nominal criterion variable (output variable)

n A sample is used to train the classifier training set), which is then evaluated on an independent testing set 
(testing) before being used to assign additional units to classes (prediction). 

n The discriminant function can be either linear or quadratic. Linear discriminant analysis relies on the 
assumption that the different classes have similar covariance matrices. 

n The accuracy of the discriminant function can be evaluated in different ways.
q On the whole sample (internal approach)
q Splitting of the sample into training and testing set (holdout approach)

• Iterative subsampling
• K-fold Cross-validation
• Leave-one-out

n The efficiency decreases with the p/N ratio. When this ratio is too low, there is a problem of over-fitting.
n Stepwise approaches consist in selecting the subset of variables which raises the highest efficiency. 
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KNN classifiers

Statistical Analysis of Microarray Data



K nearest neighbours

n Discriminant analysis is a global approach to classification: the discriminant rule is 
established in the same way for the whole data space, on the basis of group centres and 
covariance matrices. Discriminant analysis is thus a global classifier. 

n K nearest neighbour (KNN) classifiers takes a very different approach: at each position of 
the feature space
q The K closest neighbour points from the training set are identified;
q A vote is established as a function of the relative proportions of the respective training 

groups in this set of neighbours.
n KNN is thus a local classifier. 
n The choice of K drastically affects group assignments. 
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Supplementary material
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Conceptual illustration with a single predictor variable

Exercise
n Given two predefined classes (A and 

B), try intuitively to assign a class to 
each new object (X positions denoted 
by vertical black bars).

n How confident do you feel for each of 
your predictions ?

n What is the effect of the respective 
means ?

n What is the effect of the respective 
standard deviations ?

n What is the effect of the population 
sizes ?
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Conceptual illustration with a single variable

n In this conceptual example, the two populations 
have equal means and variances. 

n To which group (A or B) would you assign the 
points at coordinate x, y, z, t, respectively ? 
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Conceptual illustration with a single variable

n Same exercise. 
n This example shows that the assignation is 

affected by the position of the group centres. 
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Conceptual illustration with a single variable

n Same exercise. 
n When the centres become too close, some 

uncertainty is attached to some points (y, but 
also partly z). 

n There is thus an effect of group distance.
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Conceptual illustration with a single variable

n Same exercise. 
n The centres are in the same position as in the 

first example, but the variance is larger. 
n This affects the level of separation of the groups, 

and raises some uncertainty about the group 
membership of z.

n The group variance thus affects the assignation. 
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Conceptual illustration with a single variable

n Same exercise.
n This illustrates the effect of  the sample size: if a 

sample has a much larger size than another one, 
it will increase the likelihood that some 
observations were issued from this group. 
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Conceptual illustration with a single variable

n Same exercise.
n This is the symmetric situation of the preceding 

figure. 
n Although the group centres and variances are 

identical, the change of sample sizes completely 
modifies the group assignations.

n This is an effect of prior probability.  
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Conceptual illustration with a single variable

n Same exercise.
n If the two groups have different dispersions, it 

will affect their likelihood to be the originators of 
some observations. 

n The relative dispersion of the groups affects 
the assignation. 
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Conceptual illustration with a single variable

n Same exercise.
n Symmetrical situation of the preceding one: 

same centres, same sample sizes, but the 
relative variances vary in the opposite way.  

n The relative dispersion of the groups affects 
the assignation. 
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Conceptual illustration with a single variable

n Same exercise.
n When the dispersion of one group becomes too 

high, a simple boundary is not sufficient anymore 
to separate the two groups.

n In this example, we would classify the leftmost 
(x) and rightmost (t, and maybe z) objects as B, 
and the central ones (y) as A. `

n We need thus two boundaries to separate these 
groups. 

n The relative dispersion of the groups affects 
the assignation. 

89



Conceptual illustration with a single variable

n Same exercise.
n Symmetrical situation of the preceding figure. 
n The relative dispersion of the groups affects 

the assignation. 
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Maximum likelihood rule - multivariate normal case

n If the predictor variable is univariate normal
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n If the predictor variable is multivariate normal

Where
q X is the unit vector
q p is the number of variables
q µg is the mean vector for group g
q Sg is the covariance matrix for group g



Bayesian classification in case of normality

n Each object is assigned to the group which minimizes the function
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Linear versus quadratic classification rule

n There is one covariance matrix per group g. 
q This matrix indicates the covariance between each column (variable) of the 

data set, for the considered group.
q The diagonals of this matrix represent the variance (=covariance between a 

variable and itself)
n When all covariance matrix are assumed to be identical

q The classification rule can be simplified to obtain a linear function. This is 
referred to as Linear Discriminant Analysis (LDA)

q In this case,the boundary between groups will be a plane (2 variables) or a 
hyper-plane (more than 2 variables).

n If the variances and covariances are expected to differ between groups
q A specific covariance matrix has to be used for each group.
q The boundary between two groups is a curve (with two variables) or a 

hyper-surface (more than 2 variables).
q This is referred to as Quadratic Discriminant Analysis (QDA)
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