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Experimental and
seguencing design

The sequencing of mMRNA can be used to address many
different biological questions : expression, alternative
splicing, RNA editing, fusion gene, repeats profiling, etc...

These questions have to be clearly defined BEFORE
running the sequencing part of the project => Experiment
“design”

For each of them, dedicated sequencing “design” and
bioinformatics pipeline should be used



Experimental and
seguencing design

e (Citation 1 : "To consult a statistician after an experiment
is finished is often merely to ask him to conduct a
post-mortem examination. He can perhaps say what
the experiment died of." (Ronald A. Fisher, Indian
Statistical Congress, 1938, vol. 4, p 17)

e Citation 2 : "While a good design does not guarantee
a successful experiment, a suitably bad design
guarantees a failed experiment” (Kathleen Kerr, Atelier
Inserm 145, 2003)



Experimental and

sequencing design

(a) Pre-analysis
Experimental design Sequencing design Quality control
A X A
C N N A
Library Sequencing Replicate number 4ainan Randomization @  Randomization @ Read o e
type length and sequencing depth ~ SPIKe-ins’ library prep sequencingrun  aW reads dlignment  Susntiication = Beproducibility
$ $ ¢ ¢ $ ¢ >
Single Longer reads 3 replicates For quality control Avoids confounding Sequence quality, Read 3’ bias, Correlation,
VS better for isoform or power analysis  and library-size experimental factors GC content, uniformity, biotypes, PCA,
paired-end analysis software normalization with technical factors K-mers, duplicates GC content low-counts batch effects
(b) Core-analysis
Transcriptome profiling Differential expression Interpretation
C N C i R
.Read Tfans""p‘ Gaiieaton Quantification Preprocessing Differential expression .A.Iternatlve ' Functional profiling
alignment discovery level measure splicing analysis
> >
Mapping Compare to Transcript-level, Counts, Low-count filter, Parametric Splicing events, Overrepresented
or existing gene-level, RPKM/FPKM, bias removal, Vs, isoform expression functions, GSEA,
assembly annotations exon-level TPM normalization non-parametric pathway analysis
(c) Advanced-analysis
Visualization Other RNA-seq Integration
N, A A
' &) £ b VA =)
Genome Sashimi plots, Small and other ~ Gene fusion Lona-rand Single-cell eQTL/sQTL Chromatin TF binding Proteomics/
browser splice graphs, etc. non-coding RNAs  discovery 9 analysis (e.g. ATAC-seq) (e.g. ChiP-seq) metabolomics
b s s s s b b b S b—»

Conesa et al. 2016. Genome Biology, 17:13



Experimental and
seguencing design

e Samples collection :

o Number of replicates per condition : achieve
enough statistical power to control experiment
variability, and so, to be able to answer to your

biological question



Replicates : what does that
mean ?

e Replicates are mandatory to estimate the biological
variability
e The higher the better!
e A biological replicate is not a technical replicate
o Technical = Several extractions of the same RNA or
Several libraries built from the same RNA extraction or
A library sequenced several times

(...) With three biological replicates, nine of the 11 tools evaluated found only 20%—40% of the
significantly differentially expressed (SDE) genes identified with the full set of 42 clean
replicates (...)

Recommandations for RNA-seq experimental designs :

At least 6 replicates per condition for all experiments.

At least 12 replicates per condition for experiments where identifying the majority of all DE
genes is important.

(..)

Schurch et al. 2016. RNA, 22(6)
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e (...) Increase in biological replication significantly increases the number of DE
genes identified (...)
e (...) Power of detecting DE genes increases with both sequencing depth and
biological replication (...)



Experimental and
seqguencing design
e Samples collection :

o Number of replicates per condition : achieve
enough statistical power to control experiment
variability, and so, to be able to answer to your
biological question

o Avoid confounding effects : eg. all the samples for
condition 1 processed by technician A (or in
year/gender A) and all the samples for condition 2
processed by technician B (or in year/gender B)



Experimental and
sequencing design

e Library preparation :
o Poly-A selection
m High quantity/quality of input RNA (100-300ng and RIN > 6)
m Loss of all non-polyadenylated features (majority of
non-coding and small RNASs)
o rRNA depletion
m Variable depletion procedures efficiency (Petrova OE et al.
Sci Rep. 2017)
m More expensive (+33%)
Small RNA / miRNA
Unstranded / Stranded protocol => strand-effect control
UMI (Unique Molecule Identifier) => PCR-effect control
Spike-ins => sensitivity and accuracy of RNA-seq experiments
for transcriptome discovery and quantification across different
samples (eg. short and/or rare transcripts)

O O O O

Zhao S. et al. BMC Genomics. 2015 + Kivioja T. et al. Nat.
Methods. 2012 + Jiang L. et al. Genome Res. 2011



Experimental and
seqguencing design

e Sequencing :

o Paired-End : standard for years now

o Single-End : no more used except for gene expression only
because sequencing price / 2 compared to paired-end and
with highly similar gene counts (Pearson R?=0.9792) so you
can multiply by 2 the number of replicates at same price
;)

o Reads length : 50bp for gene expression, >75bp for the rest

o Insert length : generally ~300bp fragments, the higher the
better for splicing/fusion event discovery

o Depth : single-cell (1M reads or 50K=highly expressed or
20K=cell types), 30M fragments for gene expression, >50/75M
fragments for the rest (75M pairs => 150M reads)

o Run design



Run design

Goal:

Do not add any confounding technical effect (day, lane, run, etc...) to the
factor of interest.

Bad example x Good example | Good example |
CF1 CF1
CF2 CF2
CF1 CF1
CF2 CF2
CF3 CF3 CF3 CF3

Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2
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Quality control and mapping
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Sheng Q. et al. Brief Funct Genomics. 2017
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Quality control and mapping

Per Base Sequence Quality  Per Sequence Quality Scores  Per Base Sequence Content Per Base GC Content

Per Sequence GC Content Per Base N Content Sequence Length Distribution Duplicate Sequences
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Quality control and mapping

(a) Genome
mapping

Reads

Gapped mapper | TopHat,
STAR

Mapping to
genome

(b) Transcriptome
mapping

Reads

Ungapped mapper | Bowtie

Mapping to
transcriptome

(c) Reference-free
assembly

Reads

De Bruijn graphs | Trinity

Assembly into
transcripts

Ungapped mapper lBowtie

Map reads back

Conesa et al. 2016. Genome Biology, 17:13



Quality control and mapping

Trapnell C. Nat Biotechnol. 2009



Quality control and mapping

(a) Map Map again
MMP 1 MMP 2 R

RNA-seq read

ca)sma o=

exons in the genome

(b) (c)
Map Map
MMP 1 Extend . MMP 1 Trim

(11 [LTTTLTS

mismatches A-tail, or adapter,
or poor quality tail

Alexander Dobin et al. Bioinformatics 2013;29:15-21
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Quality control and mapping

Number of input reads
Average input read length

UNIQUE READS:

Uniquely mapped reads number
Uniquely mapped reads %
Average mapped length

Number of splices: Total

Number of splices: Annotated (sjdb)
Number of splices: GT/AG
Number of splices: GC/AG
Number of splices: AT/AC
Number of splices: Non-canonical
Mismatch rate per base, %
Deletion rate per base

Deletion average length

Insertion rate per base

Insertion average length

MULTI-MAPPING READS:

Number of reads mapped to multiple loci
% of reads mapped to multiple loci
Number of reads mapped to too many loci
% of reads mapped to too many loci

UNMAPPED READS:

% of reads unmapped: too many mismatches
% of reads unmapped: too short

% of reads unmapped: other

CHIMERIC READS:
Number of chimeric reads
% of chimeric reads

Reads/Xb

Mapgpability

D G

0

20

0 BS

Position of Read

“.‘1“l!lnl!ﬂl!lﬂl‘llnl?ﬂ!ll’ll b

T

0

1 4

°
Position

1 T
-~ K> 40

of Read(5'->3")

30

Density

006

0 000

0 008

Frequency

Af h
- A (1
i h
| i \
“ R r
‘ A A
AL \
| ‘
J AL l M
f T 4 Y Y ' |
0 50 120 190 200

mMRNA insert size (bp)

complete novel 8%

partal nowve
e

known
85%

Splice junstion annotation



Quality control and mapping
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HTSeq
FeatureCounts

Genes/Transcripts/Exons

quantification
FASTQ/FASTQ files

Salmon_aln
exXpress
RSEM
TIGAR2

counts/TPM table

Zhang et al. BMC Genomics. 2017



Genes/Transcripts/Exons

guantification
FASTQ/FASTQ files

Salmon_aln

HTSeq ARSI |\ ACCURATE
FeatureCounts RS E M

TIGAR2

counts/TPM table

Zhang et al. BMC Genomics. 2017



Genes/Transcripts/Exons

quantification
FASTQ/FASTQ files

Salmon aln
= Salmon

HTSeq eXpress et
FeatureCounts RSEM INACCURATE ia;:flih
allisto

TIGAR2

PSEUDO-
MAPPING

counts/TPM table

Zhang et al. BMC Genomics. 2017



Genes/Transcripts/Exons
quantification

A simple concept :

Accurate quantification of transcript abundance from RNA-seq data
does not require knowing the optimal alignment for every potential
locus of origin. Rather, simply knowing which transcripts (and
positions within these transcripts) match the fragments reasonably
well 1s sufficient.

transcript
( ]

read .| " -
-

=,
N4

Patro et al. 2017 + Bray et al. 2016



Genes/Transcripts/Exons
quantification

First 3 cycles of EM algorithm. . S5, X3 ) @ T
Abundance of red isoform Q e e e
estimated after the 1st M-step: - —
(Yaread a + 2read c + 1 read s

d + % read e)/(total read 0® o2 _¢
number), i.e. 0.47 —== e
((0.33+0.5+1+0.5)/5) E

> proved to converge 0@ ._3----__

> stop criterion: when all
probabilities that a
fragment is derived from a
transcript >= 10" have a
relative change <= than
1073

L. Pachter: Models for transcript quantification from
RNA-Seq, http://arxiv.org/pdf/1104.3889v2.pdf



Genes/Transcripts/Exons

quantification

Name

ENST00000424770.1
ENST00000448070.1
ENST00000413156.1
ENST00000420638.1
ENST00000398242.2

Name

ENSGO00000079974.1
ENSG00000213683.3
ENSG00000254499.1
ENSG00000225929.1
ENSG00000212569.1

Length Effective
Length
586 408.443
121 12.6016
578 400.459
685 507.217
1049 869.633
OR
Length Effective
Length
176.5 159.427
308.999 237.082
1606 1432.33
2172.5 1993.13
98 14.2568

TPM

0
0
24.2572
151.164
973.655

TPM

413.683
1808.74
0
0
0

NumReads

0

0

5
39.465
435.825

NumReads

356.123
546

0

0

0



Genes/Transcripts/Exons
quantification

SRR1039508

Salmon (log(counts + 1))

-

0 1 2 3 4 5

featureCounts (log(counts + 1))
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Sheng Q. et al. Brief Funct Genomics. 2017



Genes/Transcripts/Exons
quantification

RPKM = Reads Per Kilobase per Million

e (Num_sample total reads/ 1,000,000) = “per million”
scaling factor (SF)

e (Read counts/ SF) = This normalizes for sequencing
depth, giving you reads per million (RPM)

e (RPM/ Gene_Length _in_kb) = This gives you RPKM.

TPM = Transcripts per kilobase Per Million

e (Read Counts/ Gene Length in_kb) = This gives you
reads per kilobase (RPK).

(Sum_all_sample RPK/ 1,000,000) = This is your “per

million” scaling factor (SF).

3- (RPK/ SF) = This gives you TPM.

http://www.rna-seqgblog.com/rpkm-fpkm-and-tpm-clearly

-explained/



Genes/Transcripts/Exons
quantification

RPKM = Relative Expression Level WITHIN Sample

TPM = Normalized Expression Level comparable BETWEEN
Samples



Genes/Transcripts/Exons

quantification
EXON-LEVEL GENE-LEVEL TRANSCRIPT-LEVEL
RAW COUNTS RAW COUNTS RAW COUNTS
¢OPTIONAL :
GENE-LEVEL
AGGREGATION
DIFFERENTIAL DIFFERENTIAL DIFFERENTIAL
ANALYSIS ANALYSIS ANALYSIS
(DEXseq) (DESeq2) (Sleuth)

FUNCTIONAL ANALYSIS /

(clusterProfiler + GSEA + IPA + ROMA)




Genes/Transcripts/Exons
quantification

TABLE 1. RNA-seq differential gene expression tools and statistical tests

Assumed
Name distribution Normalization Description Version  Citations Reference
t-test Normal DEseq® Two-sample t-test for equal variances B - -
log t-test Log-normal DEseq® Log-ratio t-test - - -
Mann-Whitney None DEseq® Mann-Whitney test - - Mann and
Whitney (1947)
Permutation None DEseq® Permutation test - - Efron and
Tibshirani (1993a)
Bootstrap Normal DEseq® Bootstrap test B B Efron and Tibshirani
(1993a)
baySeq* Negative Internal Empirical Bayesian estimate of posterior ~ 2.2.0 159 Hardcastle and Kelly
binomial likelihood (2010)
Cuffdiff Negative Internal Unknown 2:1:1 918 Trapnell et al. (2012)
binomial
DEGseq© Binomial None Random sampling model using Fisher’s 1.22.0 325 Wang et al. (2010)
_ exact test and the likelihood ratio test
DESeq* Negative DEseq* Shrinkage variance 1.20.0 1889 Anders and Huber
binomial (2010)
DESeq2° Negative DEseqa Shrinkage variance with variance based 1.8.2 197 Love et al. (2014)
binomial and Cook's distance pre-filtering
EBSeq* Negative DEseq Empirical Bayesian estimate of posterior 1.8.0 80 Leng et al. (2013)
binomial (median) likelihood
edgeR® Negative TMM® Empirical Bayes estimation and either an ~ 3.10.5 1483 Robinson et al. (2010)
binomial exact test analogous to Fisher’s exact
test but adapted to over-dispersed data
or 2 sepenlized linear model
Limma*“ Log-normal TMMP Generalized linear model 3.24.15 97 Law et al. (2014)
NOISeq* None RPKM Nonparametric test based on signal-to- 2.14.0 177 Tarazona et al. (2011)
noise ratio
PoissonSeq* Poisson log- Internal Score statistic 1512 37 Li etal. (2012)
linear model
SAMSeq© None Internal Mann-Whitney test with Poisson 2.0 54 Li and Tibshirani

resampling

(2013)

Schurch et al. 2016. RNA, 22(6)



DESeqg2 vs edgeR

History

When we started working on DESeq2 in Fall 2012, one of the main differences we were focusing on was a
methodological detail* of the dispersion shrinkage steps. Aside from this difference, we wanted to update
DESeq to use the GLM framework and to shrink dispersion estimates toward a central value as in edgeR, as
opposed to the maximum rule that was previously implemented in DESeq (which tends to overestimate
dispersion).

| would say that the difference in dispersion shrinkage didn’t make a huge difference in performance compared
to edgeR, as can be seen in real and simulated** data benchmarks in our DESeq2 paper published in 2014.
From what I've seen in my own testing and numerous third-party benchmarks, the two methods typically report
overlapping sets of genes, and have similar performance for gene-level DE testing.

What'’s different then?

The major differences between the two methods are in some of the defaults. DESeq2 by default does a
couple things (which can all optionally be turned off): it finds an optimal value at which to filter low count genes,
flags genes with large outlier counts or removes these outlier values when there are sufficient samples per
group (n>6), excludes from the estimation of the dispersion prior and dispersion moderation those genes with
very high within-group variance, and moderates log fold changes which have small statistical support (e.g. from
low count genes). edgeR offers similar functionality, for example, it offers a robust dispersion estimation
function, estimate GLMRobustDisp, which reduces the effect of individual outlier counts, and a robust argument
to estimateDisp so that hyperparameters are not overly affected by genes with very high within-group variance.
And the default steps in the edgeR User Guide for filtering low counts genes both increases power by reducing
multiple testing burden and removes genes with uninformative log fold changes.

( https://mikelove.wordpress.com/2016/09/28/deseq2-or-edger/ + https://rnajournal.cshlip.org/content/22/6/839.full )


https://mikelove.wordpress.com/2016/09/28/deseq2-or-edger/
https://rnajournal.cshlp.org/content/22/6/839.full

DESeqg2 vs edgeR

Comparison of the true positive rate (TPR) and false positive rate (FPR) performance for each of
the DGE tools on low-, medium-, and highly replicated RNA-seq data (nre{3,6,12,20}—rows) for
three |Iog2(FT(‘3)I threshoIdeo gTe{O,O.S,Z}T—zcolumns).
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Functional analysis

There are a number of questions that you may answer using your set of DEGs. These
include:

1) What are the biological process, cellular locations and molecular functions that
are particularly over- or under-represented in your set of genes ?

2) What are the pathways that are significantly impacted in your condition ?

3) Which are the putative regulatory elements in the promoters of genes that show
similar expression patterns (i.e. those which have similar fold-change patterns between
different samples) ?



Functional analysis

GO Analysis : There are many tools that allow you to do this...
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...but there are also many, many mistakes related to the way the p-values are
calculated and corrected for multiple comparisons, the association of genes to
multiple GO terms and the implicit redundancy, the choice of the background
set of genes, etc... (Rhee et al. 2008. Nat Rev Genet)

Wadi L. et al. 2016. Nature Methods



Functional analysis

We are in 2021...

[DAVID 6.8 Oct. 2016

-- The DAVID Knowledgebase completely rebuilt

-- Entrez Gene integrated as the central identifier to allow for more timely updates

while still incorporating Ensembl and Uniprot as integral data sources

-- New GO category (GO Direct) provides GO mappings directly annotated by the source database (no parent terms included)
-- New annotation categories

-- New list identifier systems added for list uploading and conversion

-- A few bugs fixed

[DAVID 6.7 Jan. 2010 ]

-- The DAVID Knowledgebase completely rebuilt, including the central DAVID id system

-- Ensembl Gene included as an integral data source

-- DAVID engine completely rebuilt to facilitate future updates and development

-- New GO category (GO FAT) filters out very broad GO terms based on a measured specificity of each term (not level-specificity)
-- New annotation categories

-- New list identifier systems added for list uploading and conversion

-- Automatic list naming based on uploaded file name

-- Ability to upload expression/other values (some display, but otherwise not used in the analysis at this point)

-- A few bugs fixed

-- and more

https://david.ncifcrf.gov/content.jsp?file=release.html



Functional analysis

ShinyGO: a graphical gene-set enrichment tool for
animals and plants

Steven Xijin Ge ™, Dongmin Jung, Runan Yao

Bioinformatics, btz931, https://doi.org/10.1093/bioinformatics/btz931
Published: 27 December2019 Article history v

http://bioinformatics.sdstate.edu/qo/

Just paste your gene list to get enriched GO terms and other pathways for over 315 plant and
animal species, based on annotation from Ensembl (Release 96), Ensembl plants (R. 43) and
Ensembl Metazoa (R. 43). An additional 2031 genomes (including bacteria and fungi) are
annotated based on STRING-db (v.10). In addition, it also produces KEGG pathway diagrams
with your genes highlighted, hierarchical clustering trees and networks summarizing
overlapping terms/pathways, protein-protein interaction networks, gene characteristics plots,
and enriched promoter motifs.



http://bioinformatics.sdstate.edu/go/

Functional analysis

There are a number of questions that you may answer using your set of DEGs. These
include:

1) What are the biological process, cellular locations and molecular functions that are
particularly over- or under-represented in your set of genes ?

2) What are the pathways that are significantly impacted in your condition ?

3) Which are the putative regulatory elements in the promoters of genes that show
similar expression patterns (i.e. those which have similar fold-change patterns between
different samples) ?



Functional analysis

Pathway databases (eg. Reactome, KEGG, etc.) : Here your set of DEG will be mapped
on pathways. No real analysis is performed but you see what DEGs are on each
pathway. The limitations are obvious: no p-values are calculated, no idea about which
pathways are affected beyond random chance, etc.

Pathway enrichment analysis : Here, pathways are considered as simple sets of genes
and an enrichment p-value is calculated for each (e.g. DAVID, GSEA, Ingenuity, etc.).
The limitations include the fact that the p-values are calculated based on the
assumption that all variables (genes) are independent while the pathways are there
precisely to tell you how these genes influence each other. Another limitation is that the
pathways are treated as simple bags of genes, disregarding all the phenomena and
interactions between genes that they describe. This analysis approach only looks at the
number of DE genes and makes no difference between a situation in which a pathway
has 3 entry points and all 3 are severely down-regulated thus effectively shutting down
the entire pathway and a situation in which 3 other random genes are down regulated
on the same pathway.

Reimand J et al. 2019. Nat Protoc



Functional analysis

There are a number of questions that you may answer using your set of DEGs. These
include:

1) What are the biological process, cellular locations and molecular functions that are
particularly over- or under-represented in your set of genes ?

2) What are the pathways that are significantly impacted in your condition ?

3) Which are the putative regulatory elements in the promoters of genes that show
similar expression patterns (i.e. those which have similar fold-change patterns
between different samples) ?



Functional analysis

You can download the putative promoters (usually 1kb upstream of the transcriptional start site

is a good starting point) of all the genes you are interested in and search for enriched DNA

motifs - you can use the online programs RSAT (http://www.rsat.eu/) or MEME

(http://meme.nbcr.net/meme/) . These DNA motifs may be recognised by sequence-specific

transcription factors, thereby giving you insight into how this particular transcription profile may

be regulated.
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Nguyen NTT et al. 2018. NAR
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Fusion transcripts
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Torres-Garcia et al. 2014. Bioinformatics



Fusion transcripts

e An important class of cancer-contributing somatic
alterations because they can drive the development of
cancer

e Attractive as both therapeutic targets and diagnostic
tools due to their tumor-specific expression
o ex. BCR-ABL1 is associated with chronic myeloid
leukemia and used as biomarker

e Other classes of chimeric transcripts :
o Read-through
o Trans-splicing



Number of gene fusions

Fusion transcripts
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Mertens et al. 2015. Nat. Rev. Cancer



TPR

Fusion transcripts
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Haas BJ et al. 2019. Genome Biol.



Fusion transcripts

Liu et al., 2016 demonstrated the
potential of a meta-caller algorithm

Fusion 1

Fusion 2 66 130 - 34
Fusion 3 17

Fusion 4 B - - 7

Step 1: Keep the fusion transcripts
detected by at least 2 tools

Fusion 1
Fusion 2 66 130 - 34
Fusion 4 a4 - - 7

to large) , calculate the sum rank and

Step 2: Rank within each tool (small
order it from large to small

Fusion 1 B
Fusion 2 3 2 0 3 8 1
Fusion 4 1 0 0 1 2 3

nf-core/ .
rnafusion

@ Pipeline overview (v1.2.0 - 2020/07/15)

The pipeline is built using Nextflow and processes data using the following steps:

Arriba

e EricScript

e FastQC - read quality control

e FusionCatcher

e Fusioninspector

e fusion-report

e MultiQC - aggregate report, describing results of the whole pipeline
o Pizzly

e Squid

e Star-Fusion



@ ericscript
@® squid

Fusion transcripts

3itooll/s]
4itool/s 23tool//s]

Tool Tool RSl
Gegaoer distribution
Displays number of found fusions per tool. Sum of counts detected by different tools per fusion.
@ starfusion fusioncatcher @ pizzly @ 5toolls @ 4toolls @ 3toolss 2 tool/s 1 tool/s

@ together

Known
Vs
Unknown

Shows the ration between found and unknown missing fusions in the
local database.

® known @ unknown
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Single-cell RNA-seq
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a

Tang et al. 2009

b

Single cells in study

Manual
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Multiplexing

Islam et al. 2011%*

Single-cell RNA-seq
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Svensson et al. Nature protocols (2018)



Single-cell RNA-seq

Visium with Single Cell Multiome
Immunofluorescence ATAC + Gene Expression
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https://www.10xgenomics.com/



Single-cell

RNA-seq

Cell type identification

Heterogeneous tissue or tumor

Dimensionality
reduction
(e.g. PCA)
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Hwang et al. Experimental & Molecular Medicine (2018)



Spatial Single-cell RNA-seq

/ PI3K Signaling
it : 211 genes
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https://www.10xgenomics.com/




Single-cell RNA-seq Full-Length

Article | Open Access | Published: 12 August 2020

High throughput error corrected Nanopore single
cell transcriptome sequencing

Kevin Lebrigand &3, Virginie Magnone, Pascal Barbry &3 & Rainer Waldmann &3

Nature Communications 11, Article number: 4025 (2020) I Cite this article

9506 Accesses | 6 Citations | 58 Altmetric | Metrics

TTTTTTTTTTT

full length read

Informations on splicing, fusions, SNPs, editing, imprinting are preserved

PacBio Sequel Il Oxford Nanopore Technology

+++ higher accuracy +++ high throughput (80M reads / flowcell)
-- low throughput (4M reads / SMRT) | --- lower accuracy

Price (1.400€ / SMRT) Price (1.400€ /Flowcell)

2 challenges to tackle

(1) get enough reads to profile molecules (50k reads / cell)
(2) high accuracy for cell barcode and UMI identification
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Why ?

SHORT READ TRANSCRIPT ASSEMBLY IS INSUFFICIENT
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How insufficient ?

STEIJGER (2013) VS. ANGELINI (2014) VS. CHANG (2014)
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i ] —= - Figure 5 | Transcript assembly performance.
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GSTRUGT . .

blue) and reported transcripts that match the
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(b) Transcripts for which various subsets of
constituent exons have been reported.
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Stejger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat Meth 10, 1177-1184 (2013).
Angelini, C., Candtis, D. & Feis, |. Computational approaches for isofarm detection and estimation: good and bad news. BMC Bicinformatics 15 13543 (2014).
Chang, Z., Wang, Z. & Lii G. The Impacts of Read Length and Transcriptome Complexity for De Novo Assembly: A Simulation Study. PLoS ONE 9, e94825-8 (2014).



Long-Reads technologies

Pacific Bioscience Oxford Nanopore
SEQUEL lle = 800K€ PromethlON 48 = 600K€



How it works ?

GGTTGTTTCTGTTGGTGCTGATATTGCTTAAGAAGCC



https://docs.google.com/file/d/11a17WJ5itWCoVC8xDkAxuHbufEBUW6OR/preview
https://docs.google.com/file/d/1fZZ6qGQEkF05fPjAhE0cXapa5tkOHnNF/preview

Throughput and lengths

@ LONG READ SEQUENCING EXAMPLE: Up to 160 Gb
w >35 KB SAMPLE - RAW DATA Average: 100 — 120 Gb

m- HG02723 on PromethlON
130 Gb, 93 kb N50, 1.2 Mb max

2,600,000 ":"_"'_"'_"_':'_'“j'_:’_”_': Number of Raw Bases (Gb) 182
Unique Molecular Yield (Gb) 161
900
£ Total Reads 5,210,363
3 Half of Bases in Reads >52,456 i)
= 700
EE 1,500,000 Longest Read Lengths >175,000 = 600
2s 5
8§ Top 5% of bases in reads: >135 kb -g' 500
C ,o0000] (AN @~ """ CCC o 400
3
§ © 300
= £
50000 £ 200
Longest read lengths: >|7: Kb 100
O o
o oo e g o= prei O 0 100 200 300 400 500
Read Length (bp) Read Length (kb)

Data shown above from a 35 kb size-selected E. coli library using the SMRTbell Template Prep Kit on a Sequei |l System (2.0 Chemistry, Sequel Il System Software v8.0, 15-
hour movie). Read lengths, reads/data per SMRT Cell 8M and other sequencing performance results vary based on sample quality/type and insert size.



Errors are random

ii. Map to reference:

Generate sequence read:

TTAACGTCTGAGACACGACATGCGACCTCTGCACCGGACTCGTCCGCGTTCTTTGGCAATCGGGATCAGCTTCGGGAGATGCGGCGCAGCTTGGGGATGGATAG

lii. Generate consensus (10x coverage):

FT¢AGACACG-CAGCGHCCTCTGA-
TG AGACACHACAGC-ACCTCTGAC
ETHAGACACGACAGCGA-CTETGAC
EAGACACGACAGCGACCTC-GAR
AGRCACGACA-CGACCTCTGAC
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CGTCCTGAGACACGACAGCGACCTCTGACCGGACTCGTTCCGCGTCTTTGGACAATCGGGATTCAGACT TCGGGGGATGCGGCGCAGGCTTGGGGATGATAGGC
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LATGCGGCGCAGGCTTGG-GATGATAGGCG
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ACTCGTTCCGCGTCTTTGGACAATCGGGATTCAGACTTCGG
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Homozygous
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Errors are random
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Transcriptome applications

Uncover Novel Insights in Cancer Biology

Unlike traditional RNA-Seq techniques, long-read RNA sequencing allows accurate
quantification and complete, full-length characterisation of native RNA or cDNA without
fragmentation or amplification — streamlining analysis and removing potential sources of bias.
Direct RNA sequencing also enables the identification of base modifications alongside
nucleotide sequence.

Full-length transcripts — unambiguous identification of splice variants and gene fusions
Accurate allele-specific transcript and isoform quantification (thanks to easy phasing)
Eliminate PCR bias using direct cDNA or direct RNA sequencing

Detect base modifications alongside nucleotide sequence using direct RNA

Easy identification of anti-sense transcripts and IncRNA isoforms



Concrete example 1
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Concrete example 2
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Allele-specific analysis

Principle
RNA-seq - Global
ChIP-seq p— analysis
ATAC-seq
———_ Allele-specific
analysis
reads
Difficulties

= Need to know haplotypes
» Limited by the number of differential SNPs

» Require dedicated bioinformatics strategy

Domains of application

= Effects of genetic regulatory variants

* Non sense mediated decay SNP
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— C — — e
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—_— T [ "

* Parental imprinting
oocyte 9 _I_> _l_l |
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= X chromosome inactivation



Allele-specific analysis
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Allele-specific analysis

Method 1 : N-masked alignment strategy

filtering filtering
—p 4 546438 C T 4 546434 G A ——
4 546442 T A 4 546442 T A
\ personalised genomes /
Allele 1 - REF Allele 1 - REF
..ATGACGATCCGGGTAG... ..ATGACGATCCGGGTAG...
Allele 2 - STRAIN 1 Allele 2 - STRAIN 2
..ATGACGATCTGGGAAG... ..ATGACAATCCGGGAAG...
..ATGACGATCTGGGAAG...
FEELINELINELELT
..ATGACAATCCGGCAAG...
CHR POS STRAIN 1 STRAIN 2
a4 546434 G A
a4 546438 T C
dual-hybrid SNP annotations
v * v

..ATGACGATCNGGGNAG... ..ATGACNATCNGGGAAG... ..ATGACNATCCGGGNAG...
single-hybrid dual-hybrid single-hybrid

N-masked genomes

Krueger F and Andrews SR. 2016. F1000Res



Allele-specific quantification

Method 2 : Alignment to parental genome strategy

Alignment on genotype 1 genome

A
A
“A——C -
A A
G B o
G —
Select A—— C-
_________________________________ Best
Alignment on genotype 2 genome Alignments G
A G
A—
G —
G o P— o
G

Castel S et al. 2015. Genome Biology



Allele-specific quantification

{Raw data (Fastq files)]
y

[ Quality control + clean reads ]

Fastx trimmer
Cutadapt

Bowtie2/Tophat2
[ Parental genomes ]: . [ N-masked genome ]
Y '\
[ Mapping Genomel ] [Mapping GenomeZ]
NN

Alignment score
Mismatches number

[ Merged BAM ]

a
—

[ Genomel specific BAM ] [ Genome?2 specific BAM ]

Total BAM

v

[Count by gene/transcripts] FeatureCounts

{

[ Allele-specific expression table ]

Laurene SYX
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Expressed SNVs/indels

RNAseq-specific settings [Variant Evaliaton J

[ Base Recalibration ]

DATA CLEANUP — VARIANT DISCOVERY =) EVALUATION
is- SNP

[ Raw RNAseq Reads) ..---[ Analysis-Ready RNAseq Reads ] souE [ ngg:z Roac ]

v : i ¢
STAR 2-pass § HaplotypeCaller E x
7 : 1 : Ge.notype
Mark Duplicates E . Variant
& Sort (Picard) : Raw Variants [ SNPs ] { Indels ] ; Annotation
S
SplitNCigarReads Variant Filtering +

v Filtered Look good?
[ Analysis-Ready ] ............. : [ Variants [ SNPs ] [ Indels ] P A’
RNAseq Reads @ @
Troubleshoot Use in project

https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-



Expressed SNVs/indels

Choosing the best aligner for calling SNPs and indels

DATA CLEANUP * VARIANT DISCOVERY

Challenge T
Aligning RNAseq data to a reference ﬂ

genome is complicated by RNA splicing

Test results T
Of all aligners tested, STAR and TopHat2

performed best, and STAR achieved the

highest sensitvity and specificity for both
SNPs and indels using a highly curated
callset as truth set (CEU sample NA12878).

SNP. STAR

8310 65 1851 124422 543

Tophat2 8148 68 2007 124419 1186
INDEL  STAR 151 21 92 12889 2
Tophatz 70 20 169 12896 546

* Uncurated varisnits, marly false positive calls, some may be RNA ediling events

Selected protocol: 2-pass STAR
1) First round of alignment identifies

the splice junctions (SJ)

2) Use splice junctions to guide the second
round of ali

_g—

Dealing with Ns in read CIGARs

Challenges
Reads mapped across splice junctions have CIGAR strings with Ns and
overhangs causing noise.

Solution = ]

New GATK tool called
SplitNCigarReads

- Splits reads vith Ns
in the CIGAR string

- Keeps track of grouping
information per exon

-Trims overhang reads
which cause many false
positives (see figure).

el
cleow up |
RNASQq data? |

L/—J

Caveats

This work is in active development.
Recommendations are based on limited
dataset, single tissue sample with high
quality data (low error rates).

Known issues

- Non-optimized filtering process.

- Wrong calls due to allele imbalance
& low coverage

( Raw RNAseq Reads l e [Analysls~Ready RNAseq Reads] ‘
Variant Calling

Map to Reference

STAR 2-pass

Mark Duplicates
& Sort (Picard)

Raw
Variants

[ Indel Realignment ] Variant Filtering

¥ RNAseq-specific settings
[ Base Recalibration ]
+

Filtered
Analysis -Ready | .....:
RNAseq Reads Variants

CURRENT CHALLENGES & FUTURE WORK

o
| What should th

—_—

Chall
HaplotypeCaller (HC) performs graph-based
blyin order to comp for limitati
of genome alignment software, but spiice
junctions cause dangling heads and tails. I A a
This in t false negative call plousble  j—=m— A
is in turn causes false negative calls, haplotypes | —~ a
wxon 1 & exon 2 P
1
aa ©
o RNAseq-specific feature of HC
D D allows merging of dangling tails
o eer © aD and heads in order to rescue variants

located near splice junctions.

= Filtering annotations & thresholds
3
{

variant model
be Like? |

LA

Challenge
Variant Recalibration (VQSR) not yet supported for RNAseq.

Solution

Manual filtering using hard thresholds on specific annotations
(FS for strand bias, QD for quality normalized by depth) and clustering.

Many false variant calls are flteres (3 the SNPs chusier

Tweaks for discovery of RNA editing
Primary approach
Contrast calls from both RNAseq and DNAseq

Secondary approach

Use a caller that is less constrained by allele
frequency expectations: MuTect, designed to
detect somatic (cancer) mutations.

Fowel
e e <ot e n || Aitar). Noereal lines (6o ard/or rod) sre variant cals,
ol s ‘whils tansparent bews are clls that were fitered
G| V7St r
inimaen R
' + TS
} (R
e i
1 S
“Noisy” region dve to
mapping wros of the
— RNAs0q reads 1o the
ONA-sea | "o

https://software.broadinstitute.org/gatk/documentation/article.php?id=3891



Expressed SNVs/indels

Median-ordered median/q25/q75 genes RNA coverage as log(DP+1)

and index of 270 (hotspot) & 73 (PGM) cancer genes

010 A MO 1 000
B LR TR

5000 10000

Median-ordered genes index

I
15000



Expressed SNVs/indels

BRCA1l 19,1435185
DDR2 17,78125
FGFR3 9,35714286
APC 8,76136364
FGFR4 8,18656716
KIT 7,95238095
NOTCH1 7,33823529
NOTCH4 6,38333333
BRCA2 5,55769231
CDKN2A 5,05555556
JAK3 4,19565217
RET 1,96153846
FLT3 1,45833333
ROS1 0,8372093
HNF1A 0,8
ERBB4 0,47272727
ALK 0,43103448
MPL 0,33333333

BCORL1
KMT2A
BRCA1l
RPTOR
BRD3
SUFU
DDR2
BTK
CCND2
FCHSD1
BLM
BARD1
INHBA
RICTOR
ETV1
TET2
IRS2
CD79B
STAT4
PRDM1
DOTI1L
FGFR3
RNF43

19,54
19,1805556
19,1435185

18,328125
18,0454546
17,9347826

17,78125
17,2307692
16,5
16,225
15,6410256
15,0512821
15
14,3962264
14,1643836
13,1
12,5
11,3235294
11,1521739

10,25
10,1785714
9,35714286

91

CBL 9,0625
APC 8,76136364
PTCH1  8,61437909
EPHA3  8,47916667
FGFR4  8,18656716
BRIP1 8,10526316
MITF 8,06521739
— CDK6 8 |
KIT 7,95238095
CARD11 7,79166667
NTRK2  7,67441861
KIAA1549 7,6375
HGF 7,5877193
NOTCH1 7,33823529
CD79A 6,95
IL7R 6,9375
NOTCH4 6,38333333
PIK3CG 6,25
| GATA2 6,03333333
SLC34A2 5,625
BRCA2  5,55769231
S§§18L1  5,55555556
SLC45A3 5315

MYCL
FLT4
FLT4

CDKN2A

BCL2

JAK3
GATA3
CEBPA

IKZF1

ZNF703
PAX8
AR

EPHB1
RET
IRF4

MYCN
ESR1

PLAG1
FLT3

FGF14

CDKN2B

PAK3

ROS1

5,28571429
5,06666667
5,06666667
5,05555556
5
4,19565217
3,8
3,125
3,06097561
2,5
2,27777778
2,21875
2,09375
1,96153846
1,75
1,75
1,6875
1,6
1,45833333
1,4
1,16666667
0,85227273
0,8372093

FGF10
HNF1A
WISP3
NTRK3

GRIN2A
NTRK1
ERBB4

ALK
GATA1
MPL
FGF19
NTRK1
LRP1B

NKX2-1
EPHAS

NUTM1
FGF23

FGF3
FGF4
FGF6
SSX1
SOX10

0,83333333
0,8
0,8
0,77692308
0,76041667
0,56756757
0,52941177
0,47272727
0,43103448
0,4
0,33333333
0,33333333
0,30106952
0,24725275
0,2
0,16091954
0,13636364
0

0
0
0
0
0




Expressed SNVs/indels

The Author(s) BMC Genomics 2017, 18(Suppl 6):690

DOI 10.1186/512864-017-4022-x BMC GenomiCS

The discrepancy among single nucleotide e
variants detected by DNA and RNA high
throughput sequencing data

Yan Guom, Shilin Zhao'", Quanhu Sheng1, David C Samuels® and Yu Shyr3*

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2016
Houston, TX, USA. 08-10 December 2016



Expressed SNVs/indels

Briefings in Bioinformatics, 18(6), 2017, 973-983

doi: 10.1093/bib/bbw069
Advance Access Publication Date: 26 July 2016
Paper

Indel detection from RNA-seq data: tool evaluation and

strategies for accurate detection of actionable
mutations

Zhifu Sun, Aditya Bhagwate, Naresh Prodduturi, Ping Yang and
Jean-Pierre A. Kocher
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Transcripts reconstruction

RNA-seq data

s own reference
genome sequence
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elated genome with &
genetic distance
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Transcripts reconstruction

Vol. 30 no. 17 2014, pages 2447-2455

OR I GI NA L P A P E R doi:10.1093/bioinformatics/btu317

Gene expr ession Advance Access publication May 9, 2014

Efficient RNA isoform identification and quantification from
RNA-Seq data with network flows

Elsa Bernard'?3, Laurent Jacob?, Julien Mairal® and Jean-Philippe Vert' 23

"Mines ParisTech, Centre for Computational Biology, 77300 Fontainebleau, 2Institut Curie, 26 rue d’Uim, 75248 Paris
Cedex 05, 3INSERM U900, Paris F-75248, France, “Laboratoire Biométrie et Biologie Evolutive, Université de Lyon,
Université Lyon 1, CNRS, INRA, UMR5558, Villeurbanne, France and °LEAR Project-Team, INRIA Grenoble Rhone
Alpes, 38330 Montbonnot, France
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How insufficient

STEIJGER (2013) VS. ANGELINI (2014) VS. CHANG (2014)

a ® Sersitity @ Pracsion Sensitity (parsel) Precision (parks)
H. sapiens
] Figure 5 | Transcript assembly performance.
Auguskus e S o (a) Reference transcripts with a matching
Efj,e,,l’:" At XD submission entry (transcript-level sensitivity,
e = » blue) and reported transcripts that match the
M08 eh ] Tax® reference (transcript-level precision, orange).
P i . t (b) Transcripts for which various subsets of
A ets ] oo constituent exons have been reported.
Transomics all - —e#
rYWY @ﬁ'/‘ &l : R - . 0
Trembiyhigh | ® - H1 - 0 . . b t t 4 0 /
= s Steijger (2013): recall best at 20%, precision best a o
Vetvet + Augusius | @ .
IReckon ful - .o
iReckon ends o
SUOEal | o =
SUDEhGh - e -

Performance worse for non-coding transcripts

PE 100 bp (Set-up 1)

. . 5 Precision (100 read length) Recall (100 read length)
Angelini (2014): recall best < £ i
30%, precision best ~60% B
(o]
Simulated coding transcripts §
(A) (8)
= 25% e 100%
gz 2w sife / Chang (2014): recall best < 25%,
57" 3 Sl
2 8 s S precision best ~20%
53, .., 2 0%
8 g 10% s . . . .
8§ § o <ty Simulated coding+non-coding transcripts
2% g4 50% + . .
1.2 34 56 78 910 12 34 56 78 910
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Stejger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat Meth 10, 1177-1184 (2013).
Angelini, C., Candtis, D. & Feis, |. Computational approaches for isofarm detection and estimation: good and bad news. BMC Bicinformatics 15 13543 (2014).
Chang, Z., Wang, Z. & Lii G. The Impacts of Read Length and Transcriptome Complexity for De Novo Assembly: A Simulation Study. PLoS ONE 9, e94825-8 (2014).



Outline

- Experimental and sequencing design

- Quality control and mapping

- Genes/transcripts/exons quantification

- Functional Analysis

- Fusion transcripts / chimera detection

- Single-cell RNA-seq

- Full-length transcripts sequencing using long reads
- Allele-specific quantification

- Expressed SNVs/indels variants detection

- Transcripts reconstruction (assembly)

- Alternative splicing / polyadenylation events detection
- Virus/phages expression detection

- RNA editing events detection



Alternative splicing / polyA

Exon skipping e
ol 03 i: Exon . @ : Promoter
Mutually exclusive exons = !Intron @ @ : Polyadenylation
e
Y/ — Intron retention

Alternative donor (5) sites

S A p—

Alternative acceptor (3') sites

2
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https://doi.org/10.1016/j.drudis.2019.03.030



Alternative splicing / polyA

Computational tools to analyze
alternatively spliced transcripts can be divided into two categories

based on their functionality. Tools in the first category include
RSEM [33], Kallisto [34]| and Salmon [35], which can be applied to
analyze known or annotated transcript isoforms. Tools in the
second category include MISO [17], MAJIQ [19], tMATs [36] and
LeafCut [37], which can be used to analyze RNA-seq data at the
exon level to detect known and novel splicing events. Owing to

different definitions on AS events, different software applied to the
same datasets often come with different predictions; sometimes
the overlap of the software predictions can be very small [38]. A
widely used metric for AS is percent spliced [37] (PSI or {s), which
represents the percentage of a gene’s mRNA transcripts that in-
clude a specific exon or splice site. For a given AS event, the PSI
value can be calculated from the number of RNA-seq reads sup-
porting specific exons or splice junctions. However, if the sequenc-
ing depth is not deep enough or the expression levels for a
particular gene and its isoforms are very low, the calculated 1 is
less reliable. Although RNA-seq is indeed now the preferred tech-
nology to monitor genome-wide AS, RT-PCR remains the gold
standard to validate novel splicing variants and confirm changes
in PSI. This is especially true when the depth of reads is not
sufficient for high-confidence assessment.

https://doi.org/10.1016/j.drudis.2019.03.030



Alternative splicing / polyA
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Virus/Phages expression

Table 1. Association of viruses with human cancer.

Cancer #Samples HBV HCV EBV CMV HHV6B HPV16 HPV38 Other viruses
ACC - adrenocortical carcinoma 79
BLCA - bladder urothelial carcinoma 119 1 3 1 1 3(HPV6)
BRCA - breast invasive carcinoma 125
CESC - cervical squamous cell carcinoma 91 1 1 59 ;(1}1(?5\5/;;?)’13((:;\//3&),’)
COAD - colon adenocarcinoma 44 2 4 2 2(HPyV6)
DLBC - diffuse large B-cell lymphoma 28
GBM - glioblastoma multiforme 95
HNSC - head & neck squamous cell carcinoma 123 2 1 14 2{:":;653;)2{?::33
KICH - kidney chromophobe 66
KIRC - kidney renal clear cell carcinoma 67 1(HPV18), 1(HPV94)
KIRP - kidney renal papillary cell carcinoma 120
LGG - brain lower grade glioma 100 1
LIHC - liver hepatocellular carcinoma 115 22 6 1 1 1(HPV18), 1(AAV2)
LUAD - lung adenocarcinoma 125
LUSC - lung squamous cell carcinoma 125 3 1 1(HPV30)
PRAD - prostate adenocarcinoma 124 1 1
READ - rectum adenocarcinoma 36
SKCM - skin cutaneous melanoma 82 1 1
THCA - thyroid carcinoma 123
UCEC - uterine corpus endometrioid carcinoma 168 30*

. . 1(HPV5), 1(HPV38b),
UCS - uterine carcinosarcoma 57 1

1(HPV133)
Grand Total 2012 e R 5 77 30 55

Kazemian M. et al. 2015. JVI




Virus/Phages expression

Article | Open Access | Published: 16 November 2020

Molecular Diagnostics

Human papilloma virus (HPV) integration signature
in Cervical Cancer: identification of MACRODZ2 gene
as HPV hot spot integration site

Maud Kamal &, Sonia Lameiras, Marc Deloger, Adeline Morel, Sophie Vacher, Charlotte Lecerf, Célia
Dupain, Emmanuelle Jeannot, Elodie Girard, Sylvain Baulande, Coraline Dubot, Gemma Kenter, Ekaterina S.
Jordanova, Els M. J. J. Berns, Guillaume Bataillon, Marina Popovic, Roman Rouzier, Wulfran Cacheux,

Christophe Le Tourneau, Alain Nicolas, Nicolas Servant, Suzy M. Scholl, lvan Biéche & RAIDs Consortium

British Journal of Cancer 124, 777-785(2021) ’ Cite this article



Virus/Phages expression

nf-VIF: A Nextflow-based Virus Insertion Finder

Institut Curie - Bioinformatics Core Facility

nextflow =0.32.0 | MultQC 1.6 conda |l singularity available

Introduction

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple computing infrastructures in a very
portable manner. It comes with conda / singularity containers making installation trivial and results highly
reproducible, and can be run on a single laptop as well as on a cluster.

The current workflow is based on the nf-core best practice. See the nf-core project from details on guidelines.

Pipline summary

This pipeline was designed to process lllumina sequencing data from the HPV capture protocol. Briefly, it allows to
detect and genotype the HPV strain(s) available in the samples, and to precisely map the insertion sites on the Human
genome.

. Reads cleaning and qality controls (TrimGalore!, FastQC)

. HPV Genotyping ((Bowtie2))

. Local alignment on detected HPV strain(s) (Bowtie2)

. Detection of putative HPV breakpoints using soft-clipped reads

. Soft-clipped reads alignment on Human genome reference (BLAT)

. Detection of insertion loci and filtering of the results

N O AW N -

. Presentation of results in a dynamic report (MultiQC)
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RNA editing

RNA editing (also RNA maodification) is a molecular process through which some
cells can make discrete changes to specific nucleotide sequences within an RNA
molecule after it has been generated by RNA polymerase. It occurs in all living
organisms and is one of the most evolutionarily conserved properties of RNAs.
RNA editing may include the insertion, deletion, and base substitution of
nucleotides within the RNA molecule. RNA editing is relatively rare, with common
forms of RNA processing (e.g. splicing, 5'-capping, and 3'-polyadenylation) not
usually considered as editing. It can affect the activity, localization as well as
stability of RNAs, and has been linked with human diseases.

Type of changes :

e Editing by insertion or deletion

e Editing by deamination (APOBEC1 and/or ADAR mediated)
o C-to-U editing
o A-to-l editing
o Alternative mRNA editing (U-to-C and G-to-A)

https://en.wikipedia.org/wiki/RNA _editing



RNA editing
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RNA editing

Patients’ RNA editing profile

(o, e

A El index:
measures average editing
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Low AEI ->better survival in

*Head and neck cancer
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Table 1. Main features of tested tools for RNA editing detection

Name GIREMI JACUSA REDItools RES-Scanner RNAEditor
Required dependencies HTSlib, R for pysam, BLAT, Perl modules, pysam, pyqt4,
SAMtools, R JacusHelper SAMtools BWA, matplotlib,
SAMtools, BLAT numpy, BWA,
Picard Tools,
GATK, BLAT,
BEDtools
Required input files BAM+ BAM BAM Fastq or BAM Fastq
filtered SNVs
Stranded-oriented samples Yes Only Yes Only FR-stranded Yes, but no specified
single-end (dUTP-protocol) strand
reads
RNA replicates accepted Yes Yes No No No
De novo detection of RNA editing sites Yes Yes Yes Yes Yes
DNA-RNA comparison No Yes Yes Yes No
Works with RNA solo Yes Only with Yes No Yes
replicates
Multiple types of RNA editing Yes Yes Yes Yes Yes
Mapping included No No No Optional (BWA) Mandatory (BWA)
SNV calling No Yes Yes Yes Yes
(Samtools) (Samtools) (GATK)
Annotation of editing sites No No Yes Yes Yes
Filtering or P-value provided P-value Filtering Filtering Filtering+P-value Filtering

Diroma MA. et al. 2017. Briefings in Bioinformatics
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