Data integration in cancer research

An overview of the existing approaches

Laura Cantini

IBENS

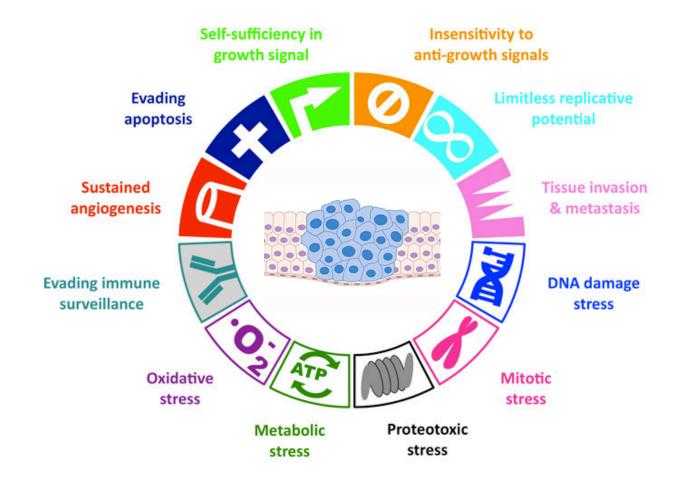
CNIS

PSI 🖈

Computational Systems Biology Team IBENS, Paris

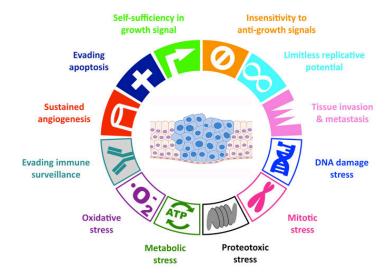
26-02-2019 DU-Bii Integrative bioinformatics

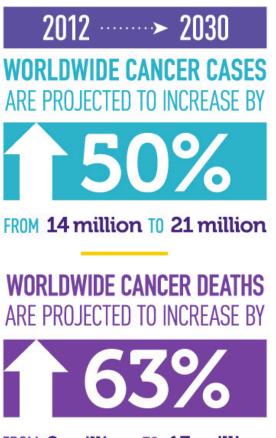
Cancer Hallmarks



Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of cancer: the next generation." cell 144.5 (2011): 646-674.

Cancer Hallmarks





FROM 8 million TO 13 million

NIH https://www.cancer.gov/

Source: American Cancer Society: Global Cancer Facts & Figures, Second Edition

26-02-2019 | DU-Bii module 6

generation." cell 144.5 (2011): 646-674.

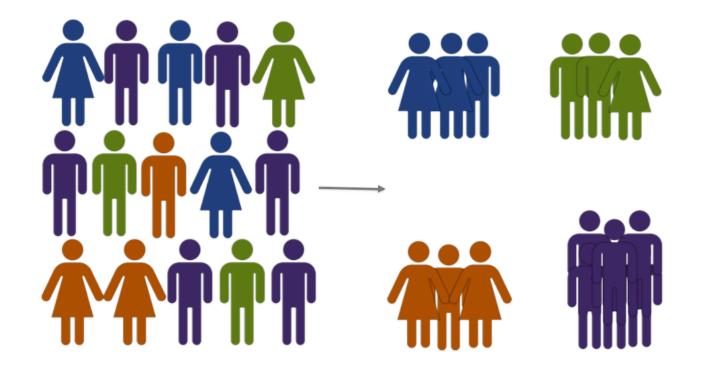
Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of cancer: the next

Laura Cantini

Cancer precision medicine

Patients suffering from the same cancer can present:

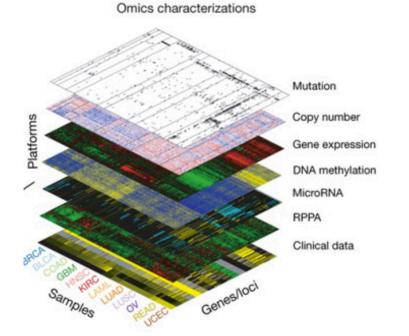
- Different prognosis
- Different response to the same treatment



 \rightarrow Precision medicine is needed

Cancer « omics » data

The Cancer Genome Atlas (TCGA)

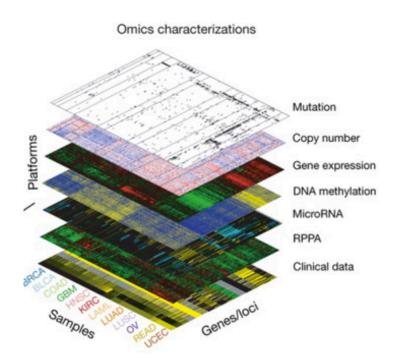


From single omics to Multi-omics

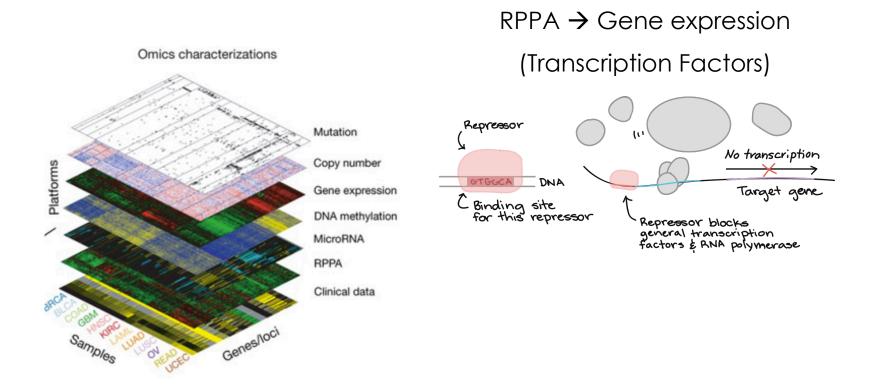
TCGA is the largest collection of multi-omics data:

- 10.000 cancer patients
- 33 cancer types
- 6 omics, plus clinical data

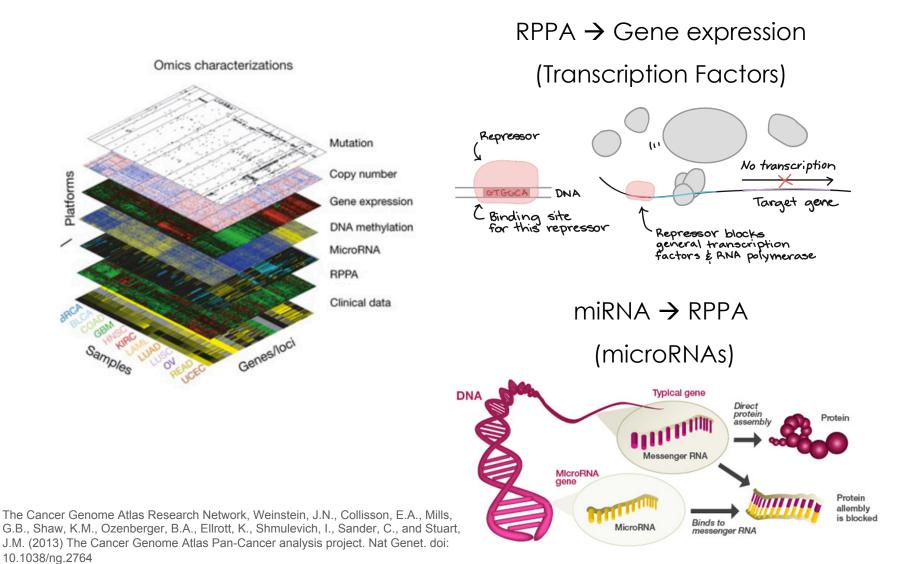
The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi: 10.1038/ng.2764



The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi: 10.1038/ng.2764

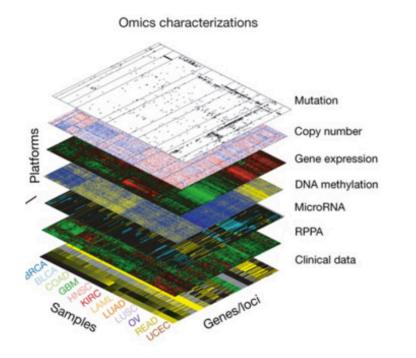


The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi: 10.1038/ng.2764

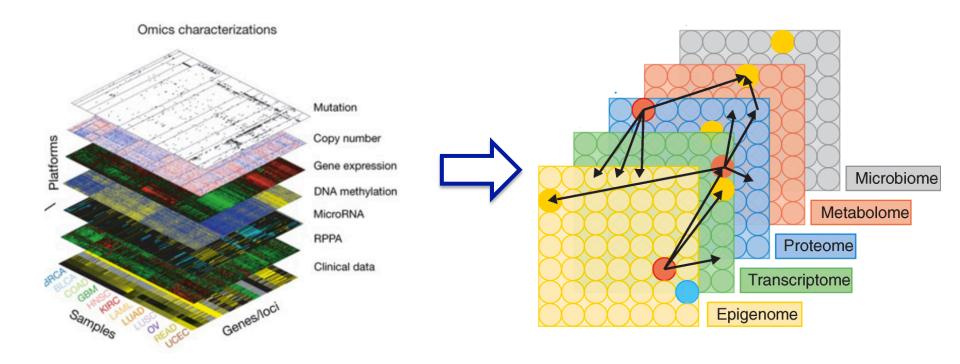


26-02-2019 | DU-Bii module 6

Laura Cantini



The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi: 10.1038/ng.2764



The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi: 10.1038/ng.2764

Hasin, Yehudit, Marcus Seldin, and Aldons Lusis. "Multi-omics approaches to disease." Genome biology 18.1 (2017): 83.

Laura Cantini

More omics is better, but how many more?

Is it always good to consider ALL the available omics?

Aim: predicting drug response

Available input data:

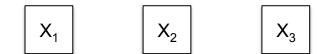
- Mutations
- Copy Number Alterations (CNA)
- Methylation
- Gene expression
- Proteomics
- Cancer types
- Drug response

ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.

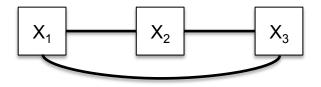
Aim: predicting drug response

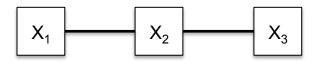
Available input data:

- Mutations
- Copy Number Alterations (CNA)
- Methylation
- Gene expression
- Proteomics
- Cancer types
- Drug response



Using correlation:





Laura Cantini

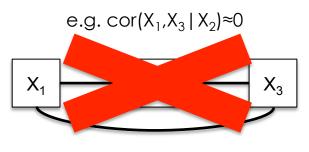
ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.

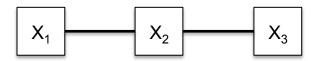
Aim: predicting drug response

Available input data:

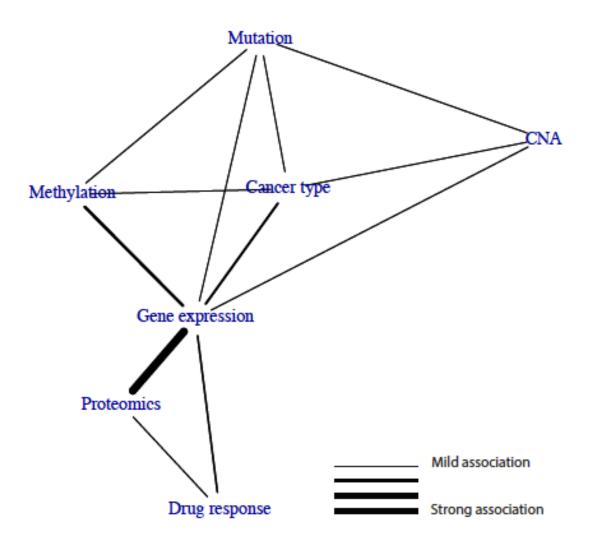
- Mutations
- Copy Number Alterations (CNA)
- Methylation
- Gene expression
- Proteomics
- Cancer types
- Drug response

Using partial correlation (iTOP):

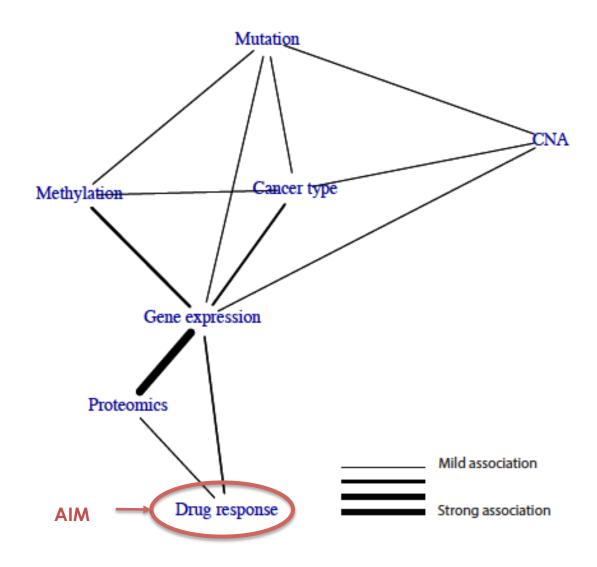




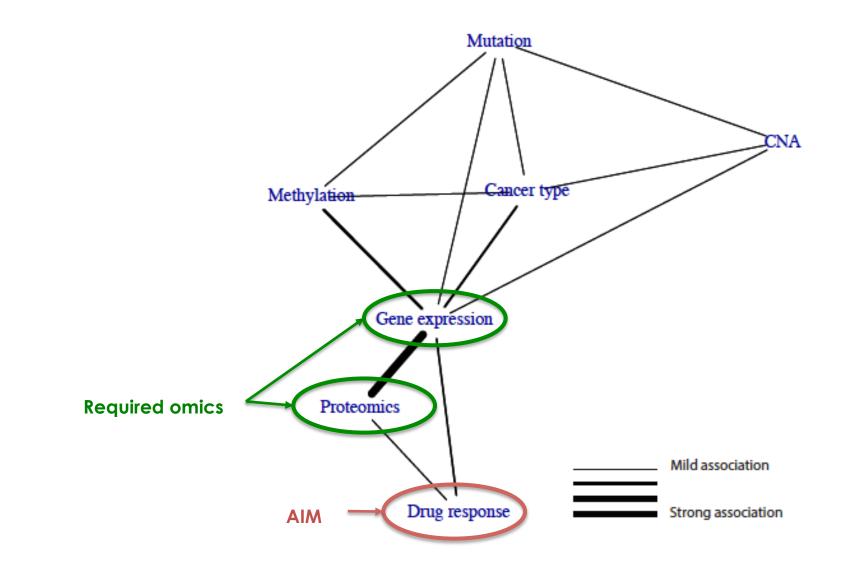
ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.



ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.



ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.

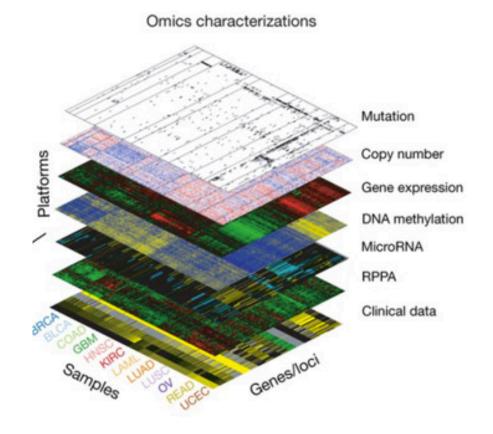


ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.

How omics should be combined?

Challenge: Multi-omics data are heterogeneous

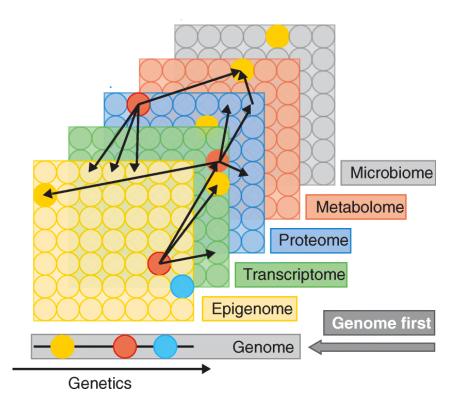
- continuous (e.g. gene expression) vs. discrete (e.g. CNV).
- They have different dimension
- They have different ranges of variability
- Involving heterogeneous entities (e.g. genes, proteins, CpGs). -> matching entities drastically reduce the information



Approach "Genome First"

Priority given to genome

Other omics are only used for interpretation

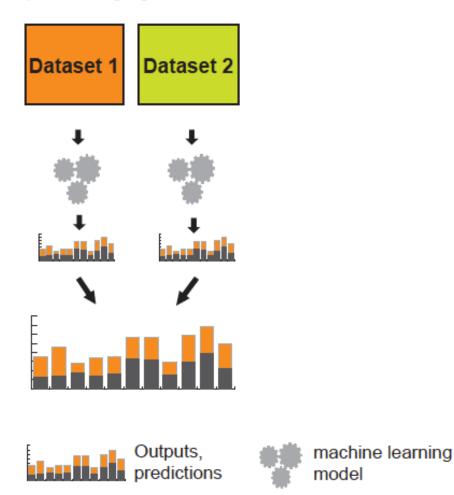


Hasin, Yehudit, Marcus Seldin, and Aldons Lusis. "Multi-omics approaches to disease." Genome biology 18.1 (2017): 83.

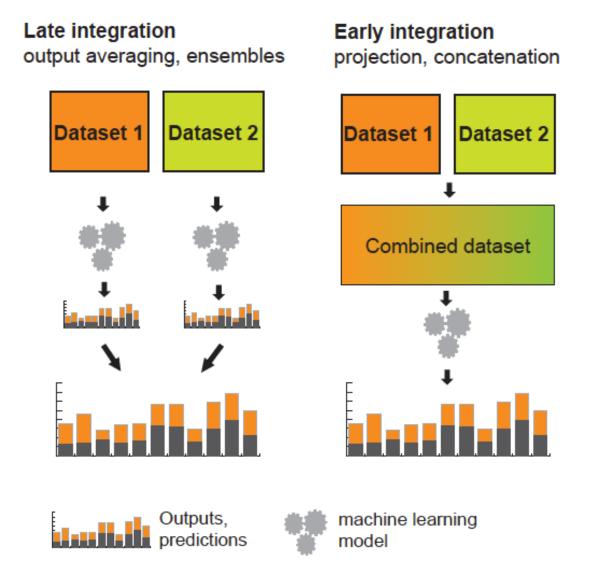
Laura Cantini

Late integration

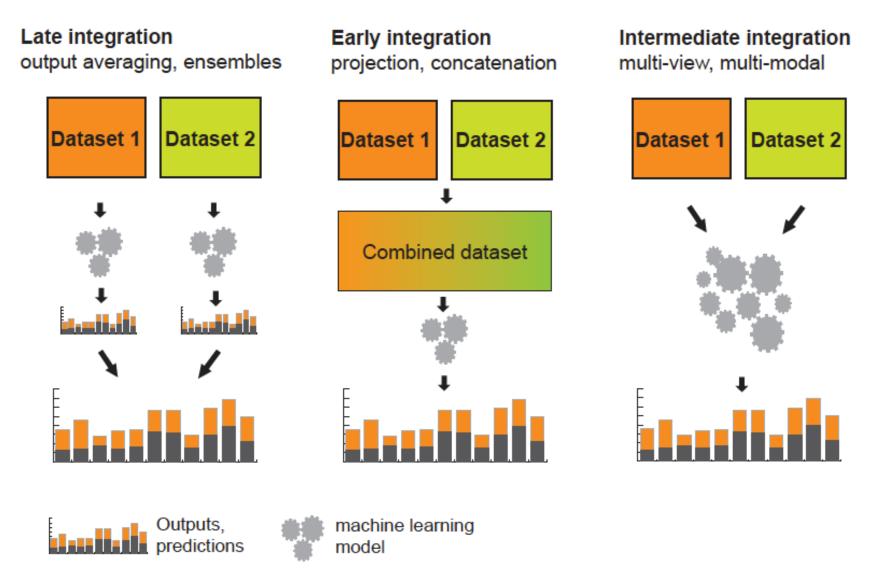
output averaging, ensembles



Zitnik, Marinka, et al. "Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities." Information Fusion 50 (2019): 71-91.



Zitnik, Marinka, et al. "Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities." Information Fusion 50 (2019): 71-91.

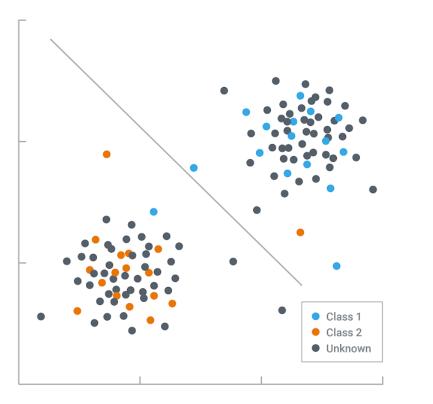


Zitnik, Marinka, et al. "Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities." Information Fusion 50 (2019): 71-91.

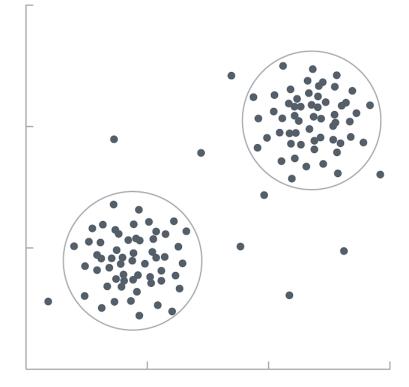
Main categories of existing multi-omics integrative approaches

Main categories of integrative approaches

Supervised methods

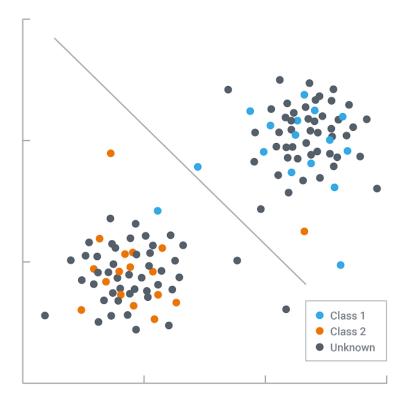


Unsupervised methods



Main categories of integrative approaches

Supervised methods

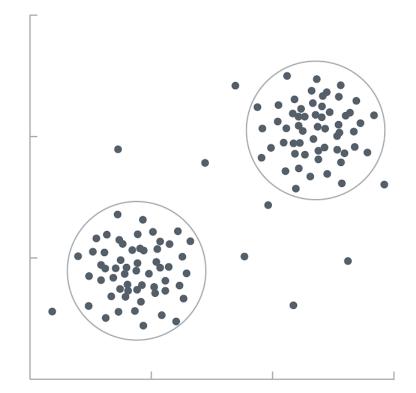


- They require 2 datasets in input: training and test datasets
- Labels must be avilable for the training dataset
- This information is used to infer labels on the test dataset

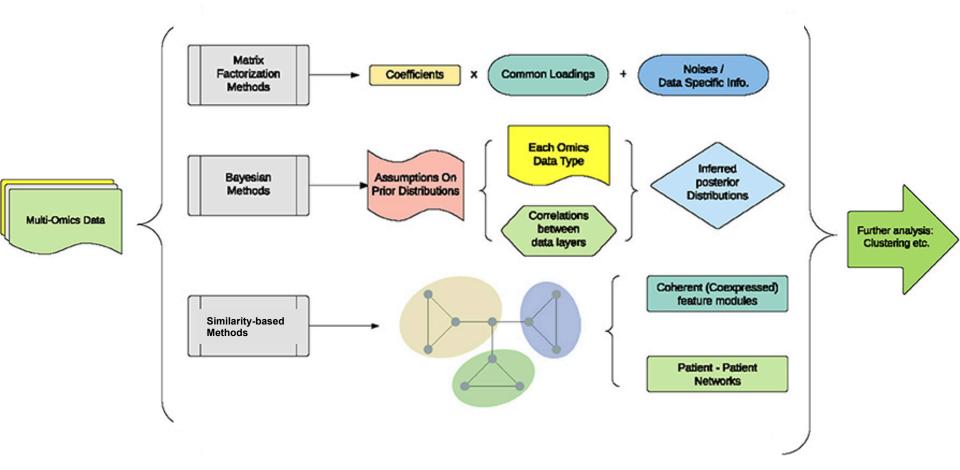
Main categories of integrative approaches

Unsupervised methods

- The methodology is directly applied to one dataset
- They infer information from the structure of the data without any label information



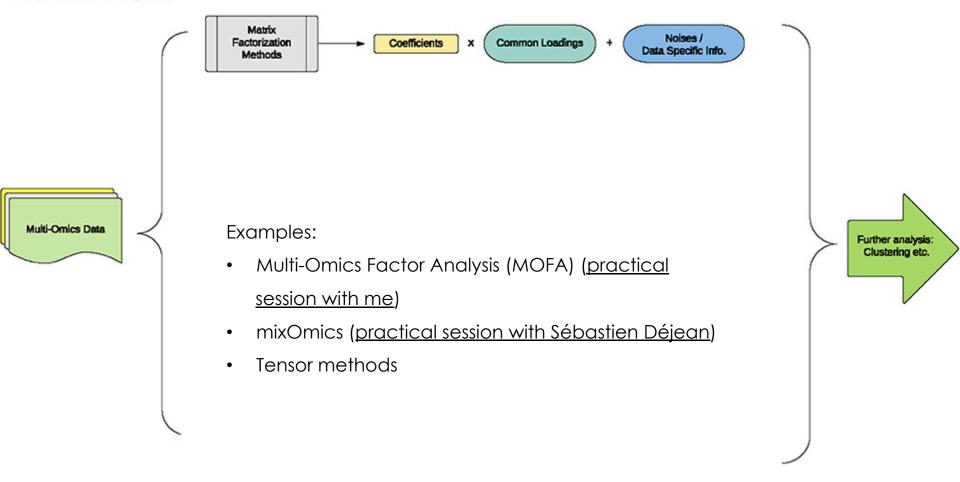
Unsupervised data integration



26-02-2019 | DU-Bii module 6

Laura Cantini

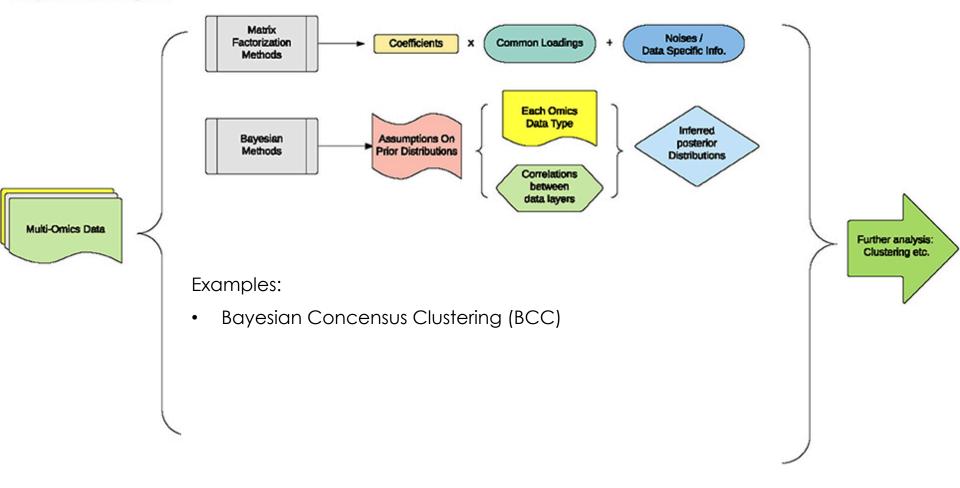
Unsupervised data integration



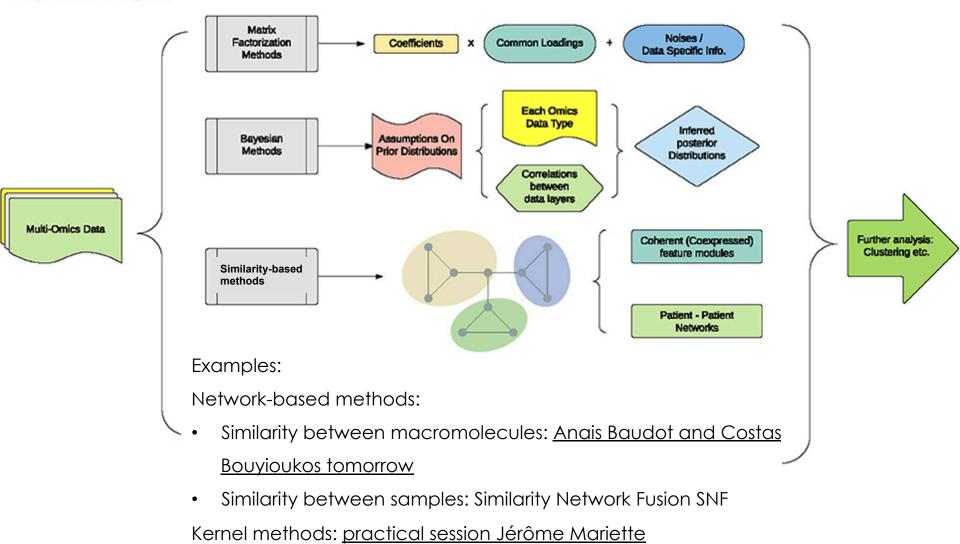
26-02-2019 | DU-Bii module 6

Laura Cantini

Unsupervised data integration



Unsupervised data integration

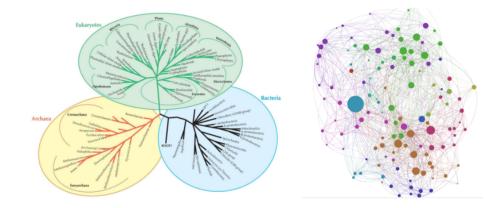


Multi-On

Of Note:

This last category of methods give the possibility to integrate heterogeneous sources of information, such as: data matrices, phylogenetic trees and networks

	Sample_a	Sample_b	Sample_c
OTU_1	3	3	3
OTU_2	5	2	3
OTU_3	2	0	2
OTU_4	4	3	0
OTU_5	0	2	2
OTU 6	0	2	2



Examples:

Network-based methods:

- Similarity between macromolecules: <u>Anais Baudot tomorrow</u>
- Similarity between samples: Similarity Network Fusion SNF

Kernel methods: practical session Jérôme Mariette

etc.

Cancer insights from data integration methods

Patients survival prediction

Given a set of cancer we want to patients predict their survival.

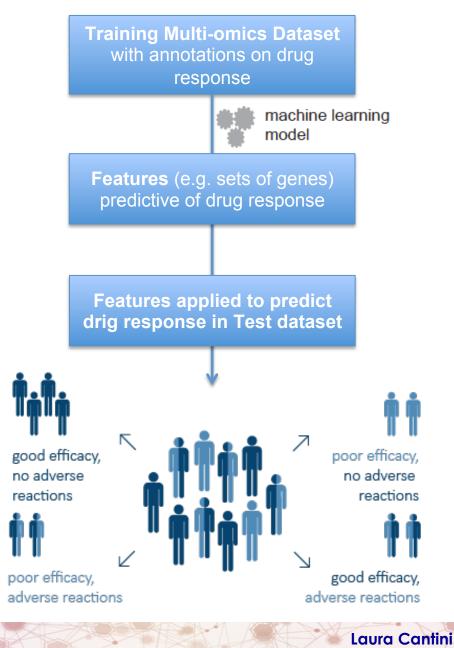
This problem is generally approached with supervised approaches.

Training Multi-omics Dataset with annotations on survival machine learning model Features (e.g. sets of genes) predictive of survival Features applied to predict survival in Test dataset 100 80 Survival (%) 60 Mediar surviva 40 mos. 32 20 0 50 100 150 Time (months)

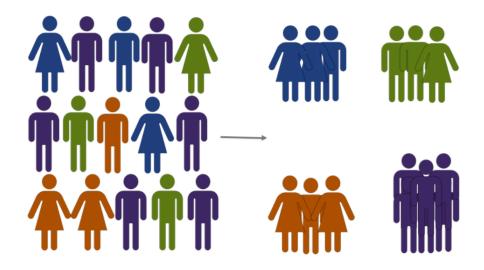
Drug responce prediction

Given a set of cancer we want to patients predict which will respond to a given therapy.

This problem is generally approached with supervised approaches.



Cancer subtyping

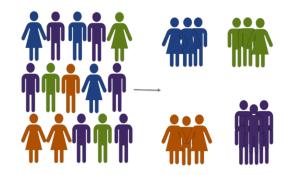


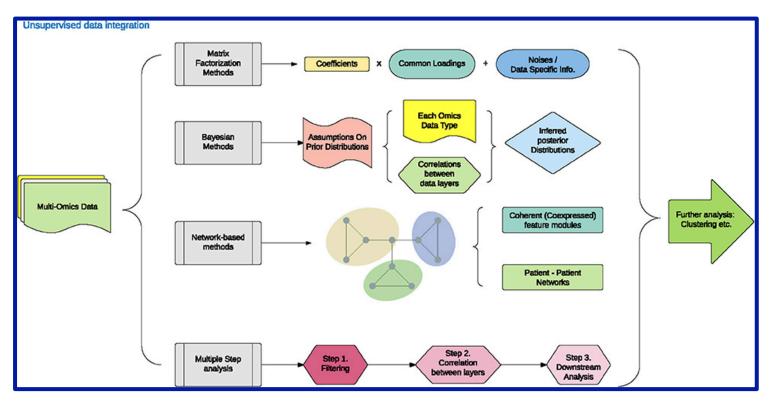
CMS1 (13%)	CMS2 (35%)	CMS3 (11%)	CMS4 (20%)	Unclassified (21%)
 Right colon, female MSI, <i>BRAF</i> mut, hypermutated Immune activation Worse survival after relapse 	 Left colon MSS, CIN, <i>BRAF</i> wt, <i>TP53</i> mut Epithelial, WNT/Myc pathway activation Better survival after relapse 	 KRAS mut Epithelial, IGFBP2 overexpression 	 Mesenchymal, TGFβ pathway activation, NOTCH3 overexpression Worse relapse free survival and overall survival 	 Immune and stroma infiltration Variable epithelial - mesenchymal activation
C2 Subtype 1.2 A-type CCS2 Inflammatory	C1-C5-C6 B-type Subtype 2.2 B CCS1	C3 Subtype 2.1 Globet-like A	C4 C-type Subtype 1.1-1.3 CCS3 D-E Stem-like	

Santos, Cristina, et al. "Intrinsic cancer subtypes-next steps into personalized medicine." Cellular oncology 38.1 (2015): 3-16.

Cancer subtyping

This problem is generally approached with unsupervised approaches.





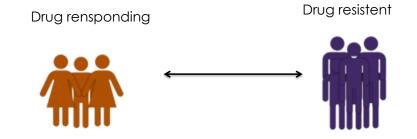
Gene modules identification

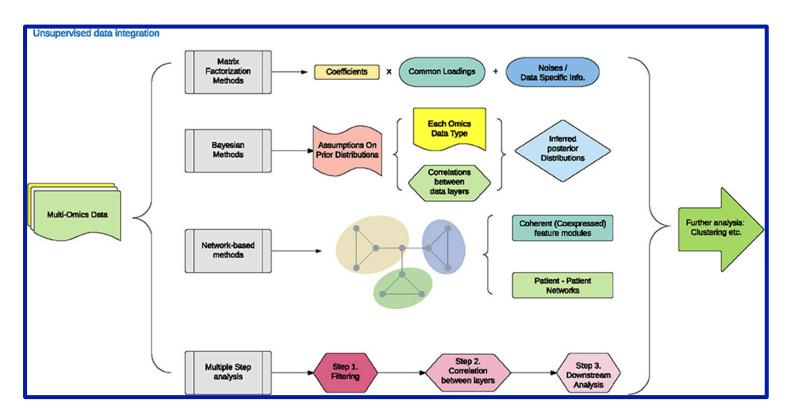
Which are the molecular mechanisms that make these two groups of patients having a different behaviour?

Can we identify a driver that can alter the behaviour of a set of patients?

Gene modules identification

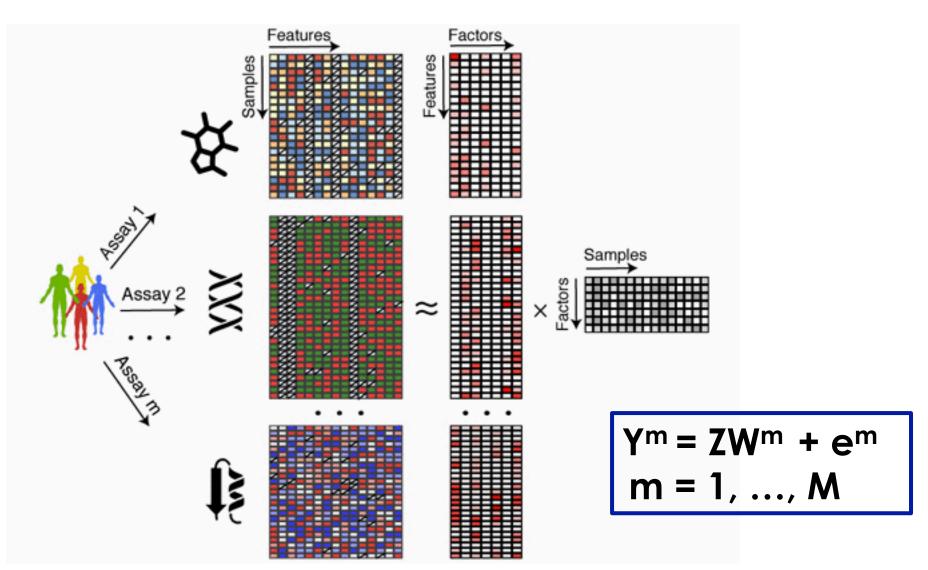
This problem is generally approached with unsupervised approaches.





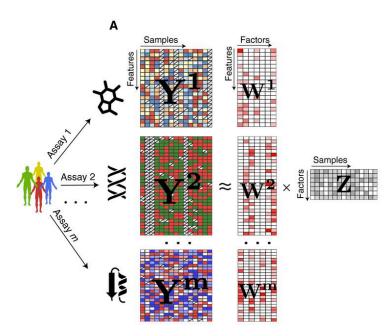
Multi-Omics Factor Analysis (MOFA)

MOFA model

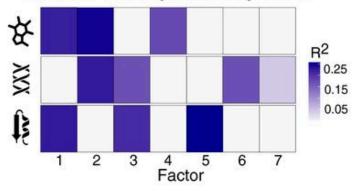


Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets." Molecular systems biology 14.6 (2018): e8124.

MOFA advantage: interpretability of factors

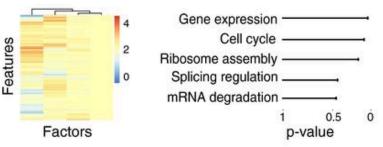


Variance decomposition by factor



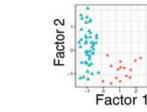
Annotation of factors

Inspection of loadings Feature set enrichment analysis



Imputation of missing values

Inspection of factors



Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets." Molecular systems biology 14.6 (2018): e8124.