The TARA Oceans expedition facilitated the study of plankton communities by providing oceans metagenomic data combined with environmental measures to the scientific community. This study focuses on 139 prokaryotic-enriched samples collected from 68 stations and spread across three depth layers: the surface (SRF), the deep chlorophyll maximum (DCM) layer and the mesopelagic (MES) zones. Samples were located in 8 different oceans or seas: Indian Ocean (IO), Mediterranean Sea (MS), North Atlantic Ocean (NAO), North Pacific Ocean (NPO), Red Sea (RS), South Atlantic Ocean (SAO), South Pacific Ocean (SPO) and South Ocean (SO). In this vignette, we consider a subset of the original data. The data include 1% of the 35,650 prokaryotic OTUs and of the 39,246 bacterial genes that were randomly selected. The aim is to integrate prokaryotic abundances and functional processes to environmental measure with an unsupervised method.
To run the following code, install the latest versions of mixOmics and phyloseq.
Install and load the mixOmics and mixKernel libraries (note that mixKernel will soon be included in mixOmics!).
The (previously normalized) datasets are provided as matrices with matching sample names (rownames):
data(TARAoceans)
# more details with: ?TARAOceans
# we check the dimension of the data:
lapply(list("phychem" = TARAoceans$phychem, "pro.phylo" = TARAoceans$pro.phylo,
"pro.NOGs" = TARAoceans$pro.NOGs), dim)
## $phychem
## [1] 139 22
##
## $pro.phylo
## [1] 139 356
##
## $pro.NOGs
## [1] 139 638
For each input dataset, a kernel is computed using the function compute.kernel
with the choice of linear, phylogenic or abundance kernels. A user defined function can also be provided as input(argument kernel.func
, see ?compute.kernel
).
The results are lists with a ‘kernel’ entry that stores the kernel matrix. The resulting kernels are symmetric matrices with a size equal to the number of observations (rows) in the input datasets.
phychem.kernel <- compute.kernel(TARAoceans$phychem, kernel.func = "linear")
pro.phylo.kernel <- compute.kernel(TARAoceans$pro.phylo, kernel.func = "abundance")
pro.NOGs.kernel <- compute.kernel(TARAoceans$pro.NOGs, kernel.func = "abundance")
# check dimensions
dim(pro.NOGs.kernel$kernel)
## [1] 139 139
A general overview of the correlation structure between datasets is obtained as described in Mariette and Villa-Vialaneix (2017) and displayed using the function cim.kernel
:
cim.kernel(phychem = phychem.kernel,
pro.phylo = pro.phylo.kernel,
pro.NOGs = pro.NOGs.kernel,
method = "square")
The figure shows that pro.phylo
and pro.NOGs
is the most correlated pair of kernels. This result is expected as both kernels provide a summary of prokaryotic communities.
The function combine.kernels
implements 3 different methods for combining kernels: STATIS-UMKL, sparse-UMKL and full-UMKL (see more details in Mariette and Villa-Vialaneix, 2017). It returns a meta-kernel that can be used as an input for the function kernel.pca
(kernel PCA). The three methods bring complementary information and must be chosen according to the research question.
The STATIS-UMKL
approach gives an overview on the common information between the different datasets. The full-UMKL
computes a kernel that minimizes the distortion between all input kernels. sparse-UMKL
is a sparse variant of full-UMKL
but also selects the most relevant kernels.
A kernel PCA can be performed from the combined kernel with the function kernel.pca
. The argument ncomp
allows to choose how many components to be extracted from KPCA.
Sample plots using the plotIndiv
function from mixOmics
:
all.depths <- levels(factor(TARAoceans$sample$depth))
depth.pch <- c(20, 17, 4, 3)[match(TARAoceans$sample$depth, all.depths)]
plotIndiv(kernel.pca.result,
comp = c(1, 2),
ind.names = FALSE,
legend = TRUE,
group = as.vector(TARAoceans$sample$ocean),
col.per.group = c("#f99943", "#44a7c4", "#05b052", "#2f6395",
"#bb5352", "#87c242", "#07080a", "#92bbdb"),
pch = depth.pch,
pch.levels = TARAoceans$sample$depth,
legend.title = "Ocean / Sea",
title = "Projection of TARA Oceans stations",
size.title = 10,
legend.title.pch = "Depth")
The explained variance supported by each axis of KPCA is displayed with the plot
function, and can help choosing the number of components in KPCA.
The first axis summarises ~ 20% of the total variance.
Here we focus on the information summrised on the first component. Variables values are randomly permuted with the function permute.kernel.pca
.
In the following example, physical variable are permuted at the variable level (kernel phychem
), OTU abundances from pro.phylo
kernel are permuted at the phylum level (OTU phyla are stored in the second column, named Phylum
, of the taxonomy annotation provided in TARAoceans
object in the entry taxonomy
) and gene abundances from pro.NOGs
are permuted at the GO level (GO are provided in the entry GO
of the dataset):
## [1] Proteobacteria Proteobacteria Proteobacteria Proteobacteria Proteobacteria
## [6] Cyanobacteria Proteobacteria Proteobacteria Chloroflexi Proteobacteria
## 56 Levels: Acidobacteria Actinobacteria aquifer1 Aquificae ... WCHB1-60
## [1] NA NA "K" NA NA "S" "S" "S" NA "S"
# here we set a seed for reproducible results with this tutorial
set.seed(17051753)
kernel.pca.result <- kernel.pca.permute(kernel.pca.result, ncomp = 1,
phychem = colnames(TARAoceans$phychem),
pro.phylo = TARAoceans$taxonomy[ ,"Phylum"],
pro.NOGs = TARAoceans$GO)
Results are displayed with the function plotVar.kernel.pca
. The argument ndisplay
indicates the number of variables to display for each kernel:
Proteobacteria
is the most important variable for the pro.phylo
kernel.
The relative abundance of Proteobacteria
is then extracted in each of our 139 samples, and each sample is colored according to the value of this variable in the KPCA projection plot:
selected <- which(TARAoceans$taxonomy[ ,"Phylum"] == "Proteobacteria")
proteobacteria.per.sample <- apply(TARAoceans$pro.phylo[ ,selected], 1, sum) /
apply(TARAoceans$pro.phylo, 1, sum)
colfunc <- colorRampPalette(c("royalblue", "red"))
col.proteo <- colfunc(length(proteobacteria.per.sample))
col.proteo <- col.proteo[rank(proteobacteria.per.sample, ties = "first")]
plotIndiv(kernel.pca.result,
comp = c(1, 2),
ind.names = FALSE,
legend = FALSE,
group = c(1:139),
col = col.proteo,
pch = depth.pch,
pch.levels = TARAoceans$sample$depth,
legend.title = "Ocean / Sea",
title = "Representation of Proteobacteria abundance",
legend.title.pch = "Depth")
Similarly, the temperature is the most important variable for the phychem
kernel. The temperature values can be displayed on the kernel PCA projection as follows:
col.temp <- colfunc(length(TARAoceans$phychem[ ,4]))
col.temp <- col.temp[rank(TARAoceans$phychem[ ,4], ties = "first")]
plotIndiv(kernel.pca.result,
comp = c(1, 2),
ind.names = FALSE,
legend = FALSE,
group = c(1:139),
col = col.temp,
pch = depth.pch,
pch.levels = TARAoceans$sample$depth,
legend.title = "Ocean / Sea",
title = "Representation of mean temperature",
legend.title.pch = "Depth")
Mariette, J. and Villa-Vialaneix, N. (2017) Integrating TARA Oceans datasets using unsupervised multiple kernel learning. bioRxiv 139287
Zhuang, J., Wang, J., Hoi, S., and Lan, X. (2011). Unsupervised multiple kernel clustering. Journal of Machine Learning Research: Workshop and Conference Proceedings, 20, 129–144.
Lavit, C., Escoufier, Y., Sabatier, R., and Traissac, P. (1994). The act (statis method). Computational Statistics & Data Analysis, 18(1), 97 – 119.
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-conda_cos6-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
## BLAS/LAPACK: /shared/mfs/data/software/miniconda/envs/r-3.6.3/lib/libopenblasp-r0.3.9.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] mixKernel_0.4 reticulate_1.16 mixOmics_6.10.9 ggplot2_3.3.1
## [5] lattice_0.20-41 MASS_7.3-51.6 knitr_1.28
##
## loaded via a namespace (and not attached):
## [1] Biobase_2.46.0 tidyr_1.1.0 jsonlite_1.6.1
## [4] splines_3.6.3 foreach_1.5.0 ellipse_0.4.1
## [7] assertthat_0.2.1 stats4_3.6.3 phyloseq_1.30.0
## [10] yaml_2.2.1 corrplot_0.84 pillar_1.4.4
## [13] glue_1.4.1 quadprog_1.5-8 digest_0.6.25
## [16] RColorBrewer_1.1-2 XVector_0.26.0 colorspace_1.4-1
## [19] htmltools_0.4.0 Matrix_1.2-18 plyr_1.8.6
## [22] psych_1.9.12.31 pkgconfig_2.0.3 zlibbioc_1.32.0
## [25] purrr_0.3.4 corpcor_1.6.9 scales_1.1.1
## [28] RSpectra_0.16-0 tibble_3.0.1 mgcv_1.8-31
## [31] farver_2.0.3 IRanges_2.20.0 ellipsis_0.3.1
## [34] withr_2.2.0 BiocGenerics_0.32.0 mnormt_1.5-7
## [37] survival_3.1-12 magrittr_1.5 crayon_1.3.4
## [40] evaluate_0.14 nlme_3.1-147 vegan_2.5-6
## [43] tools_3.6.3 data.table_1.12.8 lifecycle_0.2.0
## [46] matrixStats_0.56.0 stringr_1.4.0 Rhdf5lib_1.8.0
## [49] S4Vectors_0.24.0 munsell_0.5.0 cluster_2.1.0
## [52] Biostrings_2.54.0 ade4_1.7-15 compiler_3.6.3
## [55] rlang_0.4.6 rhdf5_2.30.1 grid_3.6.3
## [58] iterators_1.0.12 biomformat_1.14.0 igraph_1.2.5
## [61] labeling_0.3 rmarkdown_2.1 gtable_0.3.0
## [64] codetools_0.2-16 multtest_2.42.0 rARPACK_0.11-0
## [67] reshape2_1.4.4 R6_2.4.1 gridExtra_2.3
## [70] dplyr_0.8.5 LDRTools_0.2-1 permute_0.9-5
## [73] ape_5.3 stringi_1.4.6 parallel_3.6.3
## [76] Rcpp_1.0.4.6 vctrs_0.3.0 tidyselect_1.1.0
## [79] xfun_0.14