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Network Science

- Start 21th century
- Roots on graph theory

- In the context of data production and computer sciences
- closely linked to the study of complex systems



Definition
Graph, Network, Web

Vertice, Node

Interaction, Edge, Link

G={V, E} Topology, Motifs ...



Macromolecules do not act
isolated, but interact with each
other to perform their functions

Molecular interactions:
Protein-Protein
Protein-DNA
Protein-RNA
Protein-Lipid

Transient, stable, obligatory ...




Systems Biology because living

organisms are complex systems
O o

@]
i
v Interaction
Networks
'
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Systems component : genes/proteins

Emerging properties : phenotypes

- Global/collective behaviour cannot be deduced from the
knowledge on the components

- Phenotype does not emerge from isolated biological
molecules but from their interactions



Part 1: Building Biological
Networks

~-rom literature, knowledge, curation
~-rom large-scale interaction experiments
-rom inference from large-scale omics data




Part 1: Building Biological
Networks

- From literature, knowledge, curation
* From large-scale interaction experiments
 From inference from large-scale omics data



Building biological networks from
literature, knowledge, curation

b Activity flows

¢ Process descriptions

W4 Directed
Irecte
] ERK M Sequential
- Mechanistic
Directed
Sequential
Mechanistic

Le Novere et al. Nature Review Genetics. 2015



Activity flow / Gene Regulatory

w,
Signalling networks
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Building biological networks from
L literature, knowledge, curation
J

b Activity flows

¢ Process descriptions

)

UBC9 ——| ELK1 <= ERK W4 Directed

Sequential
Mechanistic

Directed
Sequential
Mechanistic

c-FOS

=> pathway databases
=> mathematical modelling
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KEGG Home
Release notes
Current statistics

KEGG Database
KEGG overview
Searching KEGG
KEGG mapping
Color codes

KEGG Objects
Pathway maps
Brite hierarchies
KEGG DB links

KEGG Software
KEGG API
KGML

KEGG FTP
Subscription
Background info

GenomeNet

DBGET/LinkDB

Feedback

Copyright request

Kanehisa Labs

KEGG  v||

” Search I Help

» Japanes

KEGG: Kyoto Encyclopedia of Genes and Genomes

KEGG is a database resource for understanding high-level functions and utilities of
the biological system, such as the cell, the organism and the ecosystem, from
molecular-level information, especially large-scale molecular datasets generated by
genome sequencing and other high-throughput experimental technologies.

See Release notes (January 1, 2021) for new and updated features.

New article KEGG: integrating viruses and cellular organisms

& Main entry point to the KEGG web service
KEGG Table of Contents [Update notes | Release history]

KEGG2

&' Data-oriented entry points

KEGG PATHWAY
KEGG BRITE
KEGG MODULE
KEGG ORTHOLOGY
KEGG GENOME
KEGG GENES
KEGG COMPOUND
KEGG GLYCAN
KEGG REACTION
KEGG ENZYME
KEGG NETWORK
KEGG DISEASE
KEGG DRUG

KEGG MEDICUS

KEGG pathway maps
BRITE hierarchies and tables
KEGG modules

KO functional orthologs [Annotation]
Genomes [Pathogen | Virus | Plant]

Genes and proteins [SeqData]
Small molecules

Glycans

Biochemical reactions [RModule]
Enzyme nomenclature
Disease-related network variations
Human diseases

Drugs [New drug approvals]

Pathway
Brite

Brite table
Module
Network

KO (Function)
Organism
Virus
Compound
Disease (ICD)
Drug (ATC)
Drug (Target)

Health information resource [Drug labels search]

&' Organism-specific entry points

KEGG Organisms  Enter org code(s) :] hsa hsa eco

& Analysis tools
KEGG Mapper
BlastKOALA
GhostKOALA
KofamKOALA
BLAST/FASTA
SIMCOMP

KEGG PATHWAY/BRITE/MODULE mapping tools
BLAST-based KO annotation and KEGG mapping
GHOSTX-based KO annotation and KEGG mapping
HMM profile-based KO annotation and KEGG mapping

Sequence similarity search
Chemical structure similarity search

pathway databases: Kegg

MAPK SIGNALING PATHWAY

Chsical MAP kinase
pathway

JNK and p38 MAP kinase
pathway
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pathway databases

Pathways

~250 000 edges

Curated
networks



Building biological networks from
L literature, knowledge, curation
J

b Activity flows

¢ Process descriptions

)

UBC9 ——| ELK1 <= ERK W4 Directed

Sequential
Mechanistic

Directed
Sequential
Mechanistic

c-FOS

=> pathway databases
=> mathematical modelling



Building mathematical models of
biological processes

J A Structure (variables

and connectivity)
A

[ahenericat Model validation

relations and —
2 and predictions
constraints
B .
Parameter setting
Ba

and estimation
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Part 1: Building Biological
Networks

* From literature, knowledge, curation
- From large-scale interaction experiments
 From inference from large-scale omics data



Experimental interaction
screenings

e Protein-protein interactions
* Protein-DNA interactions

e Protein-BNA Interactions

=> Small-scale / Large-scale



Lietal., 2004

SITHE 8

CaCrze

L

+0Csre s

.

Rual et al., 2005

Formstecher et al., 2005
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Interactomes protein-protein
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Set of detected protein-protein interactions

Physical interactions, but Interactomes are devoid of spatio-
physiological interactions 7 temporal information




Interactomes: Pull-Down

Protein complexes



A‘/\\? False-negatives and “sparse

e networks”

Interaction space (to be discovered)

Interactions
discovered by
method 1

Interactions
discovered by
method 2




Interaction databases

Multi-organisms:
DIP (dip.doe-mbi.ucla.edu)

- - International
IntAct (www.ebi.ac.uk/intact) fternationa

s Molecular
MINT (mint.bio.uniromaz2.it/mint) Exchange
BioGRID (www.thebiogrid.org) Consortium

BIND (www.blueprint.org)



PSICQUIC portal

EMBL-EBI Services | Research | Training | Aboutus ||

= BRCA2
I eW Examples:BRCA2,Q06609,dmc1,10831611

Input Form | Browse Help ®: Feedback

Input Form > Browse

1,832 binary interactions found for search term BRCA2

Q& APID Interactomes?) QO @BARZ-6 Q. @mbhfucl@-0 Q@ BIND@ Status of the service

Q) @BioGridz-322 Q@ DPg
a®et
Q. © BHPIDbgz-0 a0 ai2Dg-0 Q.0 BIMExz-241
ae ae ae

Q@ iRefindex: Q. ®MatrixDB7-12 Q.0 mMBInfoz-0 Q. @menthagz-380

) ONLINE

Q@ DrugBankg

& OFFLINE

) WARNING: Time out

& ERROR: Unexpected Error

Q.0 BMINTZ-84 4, @MPIDB7-0 Q.0 @Reactome -0 Q.0 @Reactome-Fls-29 1,832 selected interactions

Q@ Spikeg Q@ TopFinds 9.0 @UniProtgz-25 Q@ VirHostNet: o e
Q0 zNea


http://www.ebi.ac.uk/Tools/webservices/psicquic/

Part 1: Building Biological
Networks

* From literature, knowledge, curation
* From large-scale interaction experiments
- From inference from large-scale omics data



Network inference from -omics
data

* Inferring/learning regulatory interactions from gene
expression data (time-series, perturbation

experiments)

* Famous methods: WGCNA, GENIE3

 Now on single-cells

Greenfield A, Madar A, Ostrer H, Bonneau R (2010)
DREAM4: Combining Genetic and Dynamic
Information to Identify Biological Networks and
Dynamical Models. PLoS ONE 5(10): e13397.

Saint-Antoine, M. M. & Singh, A. Network inference
in systems biology: recent developments,
challenges, and applications. Current Opinion in
Biotechnology 63, 89—98 (2020).

Algorithm Class | Temporal Data |Directionality Advantages Disadvantages Examples
Required?

Correlation No Undirected + Fast, scalable + Possibly WGCNA [13]
» Detection of over-simplistic PGCNA [14]
feed-forward loops, + False positives for
fan-ins, and fan-outs cascades

Regression No Directed + Good overall accuracy | * Bad detection of TIGRESS [15],

feed-forward loops, GENIE3 [16],
fan-ins, and fan-outs bLARS [17]
Bayesian - No Directed + Performance on small | - Performance on large |[19,20]
Simple networks networks.
* Inability to detect
cycles
Bayesi?n - Yes Directed « Performance on small | + Performance on large |[21]
Dynamic networks networks.
+ Detection of cycles
and self-edges
Information No Undirected (at |+ Detection of » False positives for ARACNE [25],
Theory least in feed-forward loops, cascades CLR [26],
simplest fan-ins, and fan-outs MRNET [27],
form) + Similar to correlation PIDC [28]
methods, with better
accuracy

Phixer No Directed + Parsimonious output » Possible loss of [31]
due to pruning step. overal accuracy due to

pruning step (this can
be removed if the
user chooses)

Current Opinion in Biotechnology




Interactome(s)

CO
4

Correlation of
expression

Pathways PPI Complexes

~250 000 edges ~60 000 edges ~40 000 edges ~1 400 000 edges
Curated Measured Inferred
networks networks networks



art2: What'’s next ?
=> Network Analysis
Network metrics / Network algorithms



ow to use large-scale
biological networks ?

Local approaches Global approaches

- mathematical modelling

- “guilt by association” - Topological features

- Network analysis algorithms



Local approach: identification of a
new gene involved in breast cancer
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Functional associations (n)

Expression profiling similarity (20)
-~ Similar gene deficiency phenotype (2)
— Y2H binary protein interaction (32)
— Protein co-AP (13)
— Protein co-IP (11)
- Biochemical interaction (1)

Nodes correspond to proteins,
edges to interactions identified

by different experimental
techniques

Pujana et al. 2007



ow to use large-scale
biological networks ?

Local approaches Global approaches

- mathematical modelling

- “guilt by association” - Topological features

- Network analysis algorithms
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Degree distribution
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500 1000 1500 2000 2500 3000 3500

0

1

Protein degree distribution : interactomes
are scale-free and small-world

\ ot of poorly connected Scale-free
proteins
Few highly connected
proteins = hub
——— —>

20

40 60 80 100
Nb of interactors

Power-law distribution

P(k)

0.001F
0.0001F

0.1F
0.01

Biological interpretation?

- Growth with preferential attachement (“rich get
richer”) => create “hubs”

- Robust to random attack, sensitive to targeted

1

10 100 1000 attacks

k
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Network topological structure :
Small-world property

(a) Random network (b) Scale-free network

* Milgram, 6 degrees of separation

Nibiru cataclysm Delta Air Lines

Go!




* N nodes, V edges

 Network size

* Adjacency matrix

* Degree, degree distribution

Metrics on graphs

e Path, shortest path, distances

» (Connectivity, clustering coefficient

e Betweenness

 Motifs

NETWORK MEASURES

Degree/
connectivity (k)

Clustering coefficient/
interconnectivity (C)

Assortativity/average nearest
neighbor’s connectivity (NC)

Shortest path (SP)
between two nodes

Betweenness/
centrality (B)

k,=Nb of edges through A=5

Actual links between A's
neighbors (black)

A~ Possible links between A's
neighbors (orange)

Co=n,/[Ky(K,-1)/2]
=2/[4x(4-1)/2)=0.333

NC , =(kg+k +K+k+K )/5
=(5+2+2+3+1)/5=2.6

SP,=(F,D,A,B,H)=4

B,=Fraction of SPs passing
through A
=0.090

Gavin, Cell




“Edge Betweenness”

Number of shortest paths
running through an edge

“bottleneck”

24




“Node Betweenness”

~ A o | Number of shortest paths
running through a node

“bottleneck”

Biological interpretation ?

Correlation with gene essentiality, gene
involvement in diseases, importance in
flux transmission ...




Clustering coefficient /

modularity
« (¥
Q\\“‘“\ ‘ -—/"'/,fg ¢ ca ¢
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(b) (c)

Actual links between neighbours / Possible links between
neighbours



;(% Algorithms for Network
e Analysis

* Clustering

e Exploration with Random Walk with Restart

* Integration of expression data to find active
modules



Network Analysis - Clustering

impacts

From molecular
to modular cell biology

Leland H. Hartwell, John J. Hopfield, Stanislas Leibler and Andrew W. Murray

Functional module / community / cluster / class : discrete function

Modules can be isolated or connected
Groups of proteins involved in a common cellular function



Binary interaction Functional modules Interaction Networks

Inspired from P. Aloy, ECCB 2014




A‘/\K’ Network Exploration: Random
5 Walk with Restart

J
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The Random Walk with Restart algorithm czc@
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The Random Walk with Restart algorithm C’/)“

®
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Adapted from http://slideplayer.com/slide/5223771/ Q




The Random Walk with Restart algorithm CL%

e Local exploration
e Proximity/pertinence score

wrt the seed




The Random Walk with Restart algorithm czc@

e Local exploration

e Proximity/pertinence score

wrt the seed(s)




The Random Walk with Restart algorithm czc@

e Local exploration
e Proximity/pertinence score

wrt the seed(s)

e Guilt-by association
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The Random Walk with Restart algorithm czc@

e Local exploration
e Proximity/pertinence score

wrt the seed(s)

e Guilt-by association




Random Walk with Restart on Multiplex

Networks (RWR-M)

Iy,

Co-expression

Pathways

Alberto Valdeolivas

e \Walk one layer
e Jump across layers
* Gene/Protein Seed(s)




Disease-disease

ZMPSTE24
SOX10
SECKEL SYNDROME 1
PERIPHERAL DEMYEWRATING
NEUROPATHY, CENTRAL
MBTPS2 DYSMYELINATION,
WAARDENBURGSYNDROME, AND —
HIRSCHSPRUNG DISEASE —
PATTERSON CTBP1
PSEUDOLEPRECHAUNISM
SYNDROME RPSEKA3
cpLxX1 s
MICROCEPHALIC //
PALMOPLANTAR KERATODERMA, OSTEODYSPLASTIC PRIMORDIAL
MUTILATING, WITH PERIORIFICIAL PALLISTER WSYNDROME > DWARFISM, TYPE II
KERATOTICPLAQUES, X-LINKED INS
DUBOWITZ SYNDROME /
/
COCKAYNE SYNDROME, TYPE Il Y P ML
DERMATOLEUKODYSTROPHY /

MICROCEPHALY WITH FIG4 /

CHEMOTACTIC DEFECT AND /

TRANSIENT INSR
HYPOGAMMAGLOBULINEMIA WOLF-HIRSCHHORN SYNDROME DONOHUE i s 8

~
~\\
RNF113A YUNIS-VARON SYNDROME
IGF2

FACIODIGITOGENITAL TRICHOTHIODYSTROPHY 5,

SYNDROME, AUTOSOMAL NONPHOTOSENSITIVE
KBG SYNDROME RECESSIVE
MARFANOID MENTAL PROGEROID SYNDROME,
RETARDATION SYNDROME, NEQNATAL
AUTOSOMAL
CAMPTODACTYLY SYNDROME,

GUADALAJARA, TYPE |
OSTEOPENIA AND SPARSE HAIR

LENZ-MAJEWSKI HYPEROSTOTIC

EHLERS-DANLOS SYNDROME, DWARFISM

PROGEROID FORM

B4GALT7

PTDSS1

Marseille Medical Genetics

GROWTH RESTRICTION, SEVERE,

CHROMOSOME 1P36 DELETION
SYNDROME

MANDIBULOACRAL DYSPLASIA

WITH TYPE A LIPODYSTROPHY

LMNA

WITH DISTINCTIVE FACIES

Random Walk
with Restart
Top 25




A‘/\K’ Integrating expression data and
e networks: finding active modules

Interactomes are devoid of spatio-

temporal information




RNA-seq transcriptomics analyses

RNA-seq transcriptomics data
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Active module identification Qc@

RNA-seq transcriptomics data

+

Biological Network
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Find “active” subnetworks

Algorithms: Greedy searches (PinnacleZ), Simulated
Annealing (jActiveModules), Genetic Algorithms (COSINE)
(Ideker et al. 2002, Chuang et al. 2007, Ma et al. 2011, Ozisik
etal. 2017..)

\ 7/

/7
=

Z<T
] =




Active module identification c?“

e Few methods consider the density of interactions
e Methods are using only one (usually protein-protein)

interaction networks

=> We propose a Multi-Objective Genetic Algorithm to identify active
modules from Multiplex Networks

Elva Novoa



2 objectives to maximize /

1 mn
Average nodes score NodesScore = - E Score; "™
1=1

norm Score; — min(Score)
Score; =

max(Score) — min(Score Score;

Density



2 objectives to maximize Czc@

o ] —

Average nodes score NodesScore = - Z(Score?‘”"m)
i=1
norm Score; — min(Score) )
Score; = Score; = &7 (1 — p;)

max(Score) — min(Score)

2

Density




Multi-Objectives Genetic Algorithm slop
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Multi-objective Genetic Algorithm to find Active
Modules in Multiplex Biological Networks

&
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Differential expression (average node-scores)




Multi-Objectives Genetic Algorithm O

Crossover
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Multi-objective Genetic Algorithm to find Actlve
Modules in Multiplex Biological Networks

density of
interactions
from the
multiplex
network

1000 1500

500

M@GAMUN
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Differential expression (average node-scores)

Novoa et al. BioRxiv, 2020
Bioconductor

https://github.com/elvanov/MOGAMUN



https://github.com/elvanov/MOGAMUN

