module-6-Integrative-Bioinformatics

Integrative bioinformatics course of the Diplôme Universitaire en Bioinformatique Integrative (DU-Bii)

View the Project on GitHub DU-Bii/module-6-Integrative-Bioinformatics

DU-Bii module 6: Integrative Bioinformatics


Examen 2019

Access to training material

Teaching material

Topics Trainers Access
Introduction to the course + functional annotation of gene sets Jacques van Helden Seance1
Integrating multi-omics data with multi-level matrix factorisation Laura Cantini, Sébastien Déjean and Jérôme Mariette Seance2-3
Network Analysis with Cytoscape, session I Anaïs Baudot & Costas Boulyakis Seance4

Description

This course takes place in the 1-month training “Diplôme Universitaire en Bioinformatique Intégrative” (DU-Bii) organised by Université Paris-Diderot and the Institut Français de Bioinformatique (IFB).

Pre-requisites

All participants are encouraged to follow the two introductory videos and read the review in the Paris Diderot course “Moodle” page. https://moodlesupd.script.univ-paris-diderot.fr/mod/page/view.php?id=167920

Skills acquired during this course

At the end of this course, trainees should be able to do the following: $

Concepts covered

(For Costas to verify PPI and RNA-Seq integration?)

Table of contents

Session 1: Functional interpretation of gene sets

Présentation

Teachers: Jacques van Helden and Olivier Sand

Concepts:

Resources:

Enrichment tests:

Application:

Sessions 2 and 3: Integrating multi-omics data with multi-level matrix factorisation

Contenu HTML pdf Rmd R
Presentation Laura Cantini   Slides    
Presentation Sébastien Dejean et Jérôme Mariette   Slides    
MixOmics   Slides   R
Practical MOFA html   Rmd  
Practical mixKernel html   Rmd  

Teachers: Sébastien Déjean, Jérôme Mariette et Laura Cantini

Concepts:

Practical:

Datasets:

Session 4: Network Analysis with Cytoscape, session I

Teachers: Anaïs Baudot and Costas Bouyioukos

Session 5: WGCNA, network inference

Teachers: Costas Bouyioukos and Anaïs Baudot

A document to familiarise with the terminology of correlation networks and WGCNA can be found here

The document containing all the R code for the TP, together with explanations and output graphs can is here: Network_Inference_with_WGCNA.html

Conclusions and mentions of Inferelator and cMonkey, two network inference tools which combine RNA-seq and Chip-Seq data.

Session 6: Network Analysis with Cytoscape, session II

Teachers: Anaïs Baudot and Costas Bouyioukos


Planning DU-Bii 2019

https://tinyurl.com/dubii19-planning


Credits

Course coordinators

  1. Anaïs Baudot, CNRS, Marseille
  2. Costas Bouyioukos, Université Paris-Diderot, UMR7216
  3. Olivier Sand

Other teachers

  1. Jacques van Helden, Institut Français de Bioinformatique, Aix-Marseille Université

Installation

Contributors (members of the teaching team)

git clone git@github.com:DU-Bii/module-6-Integrative-Bioinformatics.git

Other people

git clone https://github.com/DU-Bii/module-6-Integrative-Bioinformatics.git

License

This content is released under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) license. See the bundled LICENSE file for details.

Ce contenu est mis à disposition selon les termes de la licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International (CC BY-SA 4.0). Consultez le fichier LICENSE pour plus de détails.